Ivy Frontend Tests#

Introduction#

Just like the backend functional API, our frontend functional API has a collection of Ivy tests located in the subfolder test ivy. In this section of the deep dive we are going to jump into Ivy Frontend Tests!

Writing Ivy Frontend Tests

The Ivy tests in this section make use of hypothesis for performing property based testing which is documented in detail in the Ivy Tests section of the Deep Dive. We assume knowledge of hypothesis data generation strategies and how to implement them for testing.

Ivy Decorators

Ivy provides test decorators for frontend tests to make them easier and more maintainable, currently there are two:

  • @handle_frontend_test() a decorator which is used to test frontend functions, for example np.zeros() and tensorflow.tan().

  • @handle_frontend_method() a decorator which is used to test frontend methods and special methods, for example torch.Tensor.add() and numpy.ndarray.__add__().

Important Helper Functions

  • helpers.test_frontend_function() helper function that is designed to do the heavy lifting and make testing Ivy Frontends easy! One of the many Function Testing Helpers. It is used to test a frontend function for the current backend by comparing the result with the function in the associated framework.

  • helpers.get_dtypes() helper function that returns either a full list of data types or a single data type, we should always be using helpers.get_dtypes to sample data types.

  • helpers.dtype_and_values() is a convenience function that allows you to generate arrays of any dimension and their associated data types, returned as ([dtypes], [np.array]).

  • helpers.get_shape() is a convenience function that allows you to generate an array shape of type tuple

  • np_frontend_helpers.where() a generation strategy to generate values for NumPy’s optional where argument.

  • np_frontend_helpers.test_frontend_function() behaves identical to helpers.test_frontend_function() but handles NumPy’s optional where argument

Useful Notes

  • We should always ensure that our data type generation is complete. Generating float data types only for a function that accepts all numeric data types is not complete, a complete set would include all numeric data types.

  • The test_frontend_function() argument fn_tree refers to the frontend function’s reference in its native namespace not just the function name. For example lax.tan() is needed for some functions in Jax, nn.functional.relu() is needed for some functions in PyTorch etc.

To get a better understanding for writing frontend tests lets run through some examples!

Frontend Test Examples#

Before you begin writing a frontend test, make sure you are placing it in the correct location. See the /overview/contributing/open_tasks:Where to place a frontend function sub-section of the frontend APIs open task for more details.

ivy.tan()#

Jax

# ivy_tests/test_ivy/test_frontends/test_jax/test_lax/test_operators.py
@handle_frontend_test(
    fn_tree="jax.lax.tan",
    dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")),
    test_with_out=st.just(False),
)
def test_jax_tan(
    *,
    dtype_and_x,
    on_device,
    fn_tree,
    backend_fw,
    frontend,
    test_flags,
):
    input_dtype, x = dtype_and_x
    helpers.test_frontend_function(
        input_dtypes=input_dtype,
        backend_to_test=backend_fw,
        frontend=frontend,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        x=x[0],
    )
  • As you can see we generate almost everything we need to test a frontend function within the @handle_frontend_test decorator.

  • We set fn_tree to jax.lax.tan which is the path to the function in the Jax namespace.

  • We use helpers.get_dtypes("float") to generate available_dtypes, these are valid float data types specifically for Jax.

  • We do not generate any values for as_variable, native_array, frontend, num_positional_args, on_device, these values are generated by handle_frontend_test().

  • We unpack the dtype_and_x to input_dtype and x.

  • We then pass the generated values to helpers.test_frontend_function which tests the frontend function.

  • jax.lax.tan() does not support out arguments so we set with_out to False.

  • One last important note is that all helper functions are designed to take keyword arguments only.

NumPy

# ivy_tests/test_ivy/test_frontends/test_numpy/test_mathematical_functions/test_trigonometric_functions.py
@handle_frontend_test(
    fn_tree="numpy.tan",
    dtypes_values_casting=np_frontend_helpers.dtypes_values_casting_dtype(
        arr_func=[
            lambda: helpers.dtype_and_values(
                available_dtypes=helpers.get_dtypes("float"),
            )
        ],
    ),
    where=np_frontend_helpers.where(),
    number_positional_args=np_frontend_helpers.get_num_positional_args_ufunc(
        fn_name="tan"
    ),
)
def test_numpy_tan(
    dtypes_values_casting,
    where,
    frontend,
    backend_fw,
    test_flags,
    fn_tree,
    on_device,
):
    input_dtypes, x, casting, dtype = dtypes_values_casting
    where, input_dtypes, test_flags = np_frontend_helpers.handle_where_and_array_bools(
        where=where,
        input_dtype=input_dtypes,
        test_flags=test_flags,
    )
    np_frontend_helpers.test_frontend_function(
        input_dtypes=input_dtypes,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        rtol=1e-02,
        atol=1e-02,
        x=x[0],
        out=None,
        where=where,
        casting=casting,
        order="K",
        dtype=dtype,
        subok=True,
    )
  • We set fn_tree to numpy.tan which is the path to the function in the NumPy namespace.

  • Here we use helpers.get_dtypes("numeric") to generate available_dtypes, these are valid numeric data types specifically for NumPy.

  • NumPy has an optional argument where which is generated using np_frontend_helpers.where().

  • Using np_frontend_helpers.handle_where_and_array_bools() we do some processing on the generated where value.

  • Instead of helpers.test_frontend_function() we use np_frontend_helpers.test_frontend_function() which behaves the same but has some extra code to handle the where argument.

  • casting, order, subok and other are optional arguments for numpy.tan().

TensorFlow

# ivy_tests/test_ivy/test_frontends/test_tensorflow/test_math.py
@handle_frontend_test(
    fn_tree="tensorflow.math.tan",
    dtype_and_x=helpers.dtype_and_values(available_dtypes=helpers.get_dtypes("float")),
    test_with_out=st.just(False),
)
def test_tensorflow_tan(
    *,
    dtype_and_x,
    frontend,
    backend_fw,
    test_flags,
    fn_tree,
    on_device,
):
    input_dtype, x = dtype_and_x
    helpers.test_frontend_function(
        input_dtypes=input_dtype,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        x=x[0],
    )
  • We set fn_tree to tensorflow.math.tan which is the path to the function in the TensorFlow namespace.

  • We use helpers.get_dtypes("float") to generate available_dtypes, these are valid float data types specifically for the function.

PyTorch

# ivy_tests/test_ivy/test_frontends/test_torch/test_pointwise_ops.py
@handle_frontend_test(
    fn_tree="torch.tan",
    dtype_and_x=helpers.dtype_and_values(
        available_dtypes=helpers.get_dtypes("float"),
    ),
)
def test_torch_tan(
    *,
    dtype_and_x,
    on_device,
    fn_tree,
    frontend,
    backend_fw,
    test_flags,
):
    input_dtype, x = dtype_and_x
    helpers.test_frontend_function(
        input_dtypes=input_dtype,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        input=x[0],
    )
  • We use helpers.get_dtypes("float") to generate available_dtypes, these are valid float data types specifically for the function.

ivy.full()#

Here we are going to look at an example of a function that does not consume an array. This is the creation function full(), which takes an array shape as an argument to create an array filled with elements of a given value. This function requires us to create extra functions for generating shape and fill value, these use the shared hypothesis strategy.

Jax

# ivy_tests/test_ivy/test_frontends/test_jax/test_lax/test_operators.py
@st.composite
def _fill_value(draw):
    dtype = draw(helpers.get_dtypes("numeric", full=False, key="dtype"))[0]
    with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
        if ivy_backend.is_uint_dtype(dtype):
            return draw(helpers.ints(min_value=0, max_value=5))
        elif ivy_backend.is_int_dtype(dtype):
            return draw(helpers.ints(min_value=-5, max_value=5))
    return draw(helpers.floats(min_value=-5, max_value=5))


@handle_frontend_test(
    fn_tree="jax.lax.full",
    shape=helpers.get_shape(
        allow_none=False,
        min_num_dims=1,
        max_num_dims=5,
        min_dim_size=1,
        max_dim_size=10,
    ),
    fill_value=_fill_value(),
    dtypes=helpers.get_dtypes("numeric", full=False, key="dtype"),
)
def test_jax_full(
    *,
    shape,
    fill_value,
    dtypes,
    on_device,
    fn_tree,
    frontend,
    backend_fw,
    test_flags,
):
    helpers.test_frontend_function(
        input_dtypes=dtypes,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        shape=shape,
        fill_value=fill_value,
        dtype=dtypes[0],
    )
  • The custom function we use is _fill_value which generates a fill_value to use for the fill_value argument but handles the complications of int and uint types correctly.

  • We use the helper function helpers.get_shape() to generate shape.

  • We use helpers.get_dtypes to generate dtype, these are valid numeric data types specifically for Jax. This is used to specify the data type of the output array.

  • full() does not consume array.

NumPy

# ivy_tests/test_ivy/test_frontends/test_numpy/creation_routines/test_from_shape_or_value.py
@st.composite
def _input_fill_and_dtype(draw):
    dtype = draw(helpers.get_dtypes("float", full=False))
    dtype_and_input = draw(helpers.dtype_and_values(dtype=dtype))
    with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
        if ivy_backend.is_uint_dtype(dtype[0]):
            fill_values = draw(st.integers(min_value=0, max_value=5))
        elif ivy_backend.is_int_dtype(dtype[0]):
            fill_values = draw(st.integers(min_value=-5, max_value=5))
        else:
            fill_values = draw(
                helpers.floats(
                    min_value=-5,
                    max_value=5,
                    large_abs_safety_factor=10,
                    small_abs_safety_factor=10,
                    safety_factor_scale="log",
                )
            )
        dtype_to_cast = draw(helpers.get_dtypes("float", full=False))
    return dtype, dtype_and_input[1], fill_values, dtype_to_cast[0]


# full
@handle_frontend_test(
    fn_tree="numpy.full",
    shape=helpers.get_shape(
        allow_none=False,
        min_num_dims=1,
        max_num_dims=5,
        min_dim_size=1,
        max_dim_size=10,
    ),
    input_fill_dtype=_input_fill_and_dtype(),
    test_with_out=st.just(False),
)
def test_numpy_full(
    shape,
    input_fill_dtype,
    frontend,
    backend_fw,
    test_flags,
    fn_tree,
    on_device,
):
    input_dtype, x, fill, dtype_to_cast = input_fill_dtype
    helpers.test_frontend_function(
        input_dtypes=input_dtype,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        shape=shape,
        fill_value=fill,
        dtype=dtype_to_cast,
    )
  • We use helpers.get_dtypes() to generate dtype, these are valid numeric data types specifically for NumPy.

  • numpy.full() does not have a where argument so we can use helpers.test_frontend_function(), we specify the out flag explicitly.

TensorFlow

# ivy_tests/test_ivy/test_frontends/test_tensorflow/test_raw_ops.py
@st.composite
def _fill_value(draw):
    dtype = draw(_dtypes())[0]
    with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
        if ivy_backend.is_uint_dtype(dtype):
            return draw(helpers.ints(min_value=0, max_value=5))
        elif ivy_backend.is_int_dtype(dtype):
            return draw(helpers.ints(min_value=-5, max_value=5))
        return draw(helpers.floats(min_value=-5, max_value=5))


# fill
@handle_frontend_test(
    fn_tree="tensorflow.raw_ops.Fill",
    shape=helpers.get_shape(
        allow_none=False,
        min_num_dims=1,
        min_dim_size=1,
    ),
    fill_value=_fill_value(),
    dtypes=_dtypes(),
    test_with_out=st.just(False),
)
def test_tensorflow_Fill(  # NOQA
    *,
    shape,
    fill_value,
    dtypes,
    frontend,
    backend_fw,
    test_flags,
    fn_tree,
    on_device,
):
    helpers.test_frontend_function(
        input_dtypes=dtypes,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        rtol=1e-05,
        dims=shape,
        value=fill_value,
    )
  • We use helpers.get_dtypes() to generate dtype, these are valid numeric data types specifically for this function.

  • Tensorflow’s version of full() is named Fill() therefore we specify the fn_tree argument to be "Fill"

  • When running the test there were some small discrepancies between the values so we can use rtol to specify the relative tolerance. We specify the out flag explicitly.

PyTorch

# ivy_tests/test_ivy/test_frontends/test_torch/test_creation_ops.py
@st.composite
def _fill_value(draw):
    with_array = draw(st.sampled_from([True, False]))
    dtype = draw(st.shared(helpers.get_dtypes("numeric", full=False), key="dtype"))[0]
    with update_backend(test_globals.CURRENT_BACKEND) as ivy_backend:
        if ivy_backend.is_uint_dtype(dtype):
            ret = draw(helpers.ints(min_value=0, max_value=5))
        elif ivy_backend.is_int_dtype(dtype):
            ret = draw(helpers.ints(min_value=-5, max_value=5))
        else:
            ret = draw(helpers.floats(min_value=-5, max_value=5))
        if with_array:
            return np.array(ret, dtype=dtype)
        else:
            return ret


@handle_frontend_test(
    fn_tree="torch.full",
    shape=helpers.get_shape(
        allow_none=False,
        min_num_dims=1,
        max_num_dims=5,
        min_dim_size=1,
        max_dim_size=10,
    ),
    fill_value=_fill_value(),
    dtype=st.shared(helpers.get_dtypes("numeric", full=False), key="dtype"),
)
def test_torch_full(
    *,
    shape,
    fill_value,
    dtype,
    on_device,
    fn_tree,
    frontend,
    backend_fw,
    test_flags,
):
    helpers.test_frontend_function(
        input_dtypes=dtype,
        on_device=on_device,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        size=shape,
        fill_value=fill_value,
        dtype=dtype[0],
        device=on_device,
    )
  • We use helpers.get_dtypes to generate dtype, these are valid numeric data types specifically for Torch.

Testing Without Using Tests Values#

While even using hypothesis, there are some cases in which we set test_values=False for example, we have a function add_noise() and we call it on x and we try to assert (we internally use assert np.all_close) that the result from torch backend matches tensorflow and the test will always fail, because the function add_noise() depends on a random seed internally that we have no control over, what we change is only how we test for equality, in which in that case we can not and we have to reconstruct the output as shown in the example below.

# ivy_tests/test_ivy/test_frontends/test_torch/test_linalg.py
@handle_frontend_test(
    fn_tree="torch.linalg.qr",
    dtype_and_input=_get_dtype_and_matrix(batch=True),
)
def test_torch_qr(
    *,
    dtype_and_input,
    frontend,
    test_flags,
    fn_tree,
    backend_fw,
    on_device,
):
    input_dtype, x = dtype_and_input
    ret, frontend_ret = helpers.test_frontend_function(
        input_dtypes=input_dtype,
        backend_to_test=backend_fw,
        frontend=frontend,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        A=x[0],
        test_values=False,
    )

    with update_backend(backend_fw) as ivy_backend:
        ret = [ivy_backend.to_numpy(x) for x in ret]

    frontend_ret = [np.asarray(x) for x in frontend_ret]
    q, r = ret
    frontend_q, frontend_r = frontend_ret

        assert_all_close(
            ret_np=q @ r,
            ret_from_gt_np=frontend_q @ frontend_r,
            rtol=1e-2,
            atol=1e-2,
            backend=backend_fw,
            ground_truth_backend=frontend,
        )
  • The parameter test_values=False is explicitly set to “False” as there can be multiple solutions for this and those multiple solutions can all be correct, so we have to test by reconstructing the output.

What assert_all_close() actually does is, it checks for values and dtypes, if even one of them is not the same it will cause an assertion, the examples given below will make it clearer.

>>> a = np.array([[1., 5.]], dtype='float32')
>>> b = np.array([[2., 4.]], dtype='float32')
>>> print(helpers.assert_all_close(a, b))
AssertionError: [[1. 5.]] != [[2. 4.]]
>>> a = np.array([[1., 5.]], dtype='float64')
>>> b = np.array([[2., 4.]], dtype='float32')
>>> print(helpers.assert_all_close(a, b))
AssertionError: the return with a TensorFlow backend produced a data type of float32, while the return with a  backend returned a data type of float64.

Alias functions#

Let’s take a quick walkthrough on testing the function alias as we know that such functions have the same behavior as original functions. For example torch_frontend.greater() has an alias function torch_frontend.gt() which we need to make sure that it is working the same as the targeted framework function torch.greater() and torch.gt().

Code example for alias function:

# in ivy/functional/frontends/torch/comparison_ops.py
@to_ivy_arrays_and_back
def greater(input, other, *, out=None):
    input, other = torch_frontend.promote_types_of_torch_inputs(input, other)
    return ivy.greater(input, other, out=out


gt = greater
  • As you can see the torch_frontend.gt() is an alias to torch_frontend.greater() and below is how we update the unit test of torch_frontend.greater() to test the alias function as well.

PyTorch

# ivy_tests/test_ivy/test_frontends/test_torch/test_comparison_ops.py
@handle_frontend_test(
    fn_tree="torch.gt",
    aliases=["torch.greater"],
    dtype_and_inputs=helpers.dtype_and_values(
        available_dtypes=helpers.get_dtypes("float"),
        num_arrays=2,
        allow_inf=False,
        shared_dtype=True,
    ),
)
def test_torch_greater(
    *,
    dtype_and_inputs,
    on_device,
    fn_tree,
    frontend,
    backend_fw,
    test_flags,
):
    input_dtype, inputs = dtype_and_inputs
    helpers.test_frontend_function(
        input_dtypes=input_dtype,
        frontend=frontend,
        backend_to_test=backend_fw,
        test_flags=test_flags,
        fn_tree=fn_tree,
        on_device=on_device,
        input=inputs[0],
        other=inputs[1],
    )
  • We added a list of all aliases to the greater function with a full namespace path such that when we are testing the original function we will test for the alias as well.

  • During the frontend implementation, if a new alias is introduced you only need to go to the test function of the original frontend function and add that alias to all_aliases argument in the test_frontend_function() helper with its full namespace.

Frontend Instance Method Tests#

The frontend instance method tests are similar to the frontend function test, but instead of testing the function directly we test the instance method of the frontend class. major difference is that we have more flags to pass now, most initialization functions take an array as an input. also some methods may take an array as input, for example, ndarray.__add__ would expect an array as input, despite the self.array. and to make our test complete we need to generate separate flags for each.

Important Helper Functions

@handle_frontend_method() requires 3 keyword only parameters:
  • class_tree A full path to the array class in Ivy namespace.

  • init_tree A full path to initialization function.

  • method_name The name of the method to test.

helpers.test_frontend_method() is used to test frontend instance methods. It is used in the same way as helpers.test_frontend_function(). A few important arguments for this function are following:
  • init_input_dtypes Input dtypes of the arguments on which we are initializing the array on.

  • init_all_as_kwargs_np The data to be passed when initializing, this will be a dictionary in which the numpy array which will contain the data will be passed in the data key.

  • method_input_dtypes The input dtypes of the argument which are to be passed to the instance method after the initialization of the array.

  • method_all_as_kwargs_np All the arguments which are to be passed to the instance method.

Frontend Instance Method Test Examples#

ivy.add()#

NumPy

# ivy_tests/test_ivy/test_frontends/test_numpy/test_ndarray.py
@handle_frontend_method(
    class_tree=CLASS_TREE,
    init_tree="numpy.array",
    method_name="__add__",
    dtype_and_x=helpers.dtype_and_values(
        available_dtypes=helpers.get_dtypes("numeric"), num_arrays=2
    ),
)
def test_numpy_instance_add__(
    dtype_and_x,
    frontend_method_data,
    init_flags,
    method_flags,
    frontend,
    backend_fw,
):
    input_dtypes, xs = dtype_and_x

    helpers.test_frontend_method(
        init_input_dtypes=input_dtypes,
        init_all_as_kwargs_np={
            "object": xs[0],
        },
        method_input_dtypes=input_dtypes,
        method_all_as_kwargs_np={
            "value": xs[1],
        },
        frontend=frontend,
        backend_to_test=backend_fw,
        frontend_method_data=frontend_method_data,
        init_flags=init_flags,
        method_flags=method_flags,
    )
  • We specify the class_tree to be ivy.functional.frontends.numpy.array() which is the path to the class in ivy namespace.

  • We specify the function that is used to initialize the array, for jax, we use numpy.array to create a numpy.ndarray.

  • We specify the method_name to be __add__() which is the path to the method in the frontend class.

TensorFlow

# ivy_tests/test_ivy/test_frontends/test_tensorflow/test_tensor.py
@handle_frontend_method(
    class_tree=CLASS_TREE,
    init_tree="tensorflow.constant",
    method_name="__add__",
    dtype_and_x=helpers.dtype_and_values(
        available_dtypes=helpers.get_dtypes("numeric"),
        num_arrays=2,
        shared_dtype=True,
    ),
)
def test_tensorflow_instance_add(
    dtype_and_x,
    frontend,
    backend_fw,
    frontend_method_data,
    init_flags,
    method_flags,
):
    input_dtype, x = dtype_and_x
    helpers.test_frontend_method(
        init_input_dtypes=input_dtype,
        init_all_as_kwargs_np={
            "value": x[0],
        },
        method_input_dtypes=input_dtype,
        method_all_as_kwargs_np={
            "y": x[1],
        },
        frontend=frontend,
        backend_to_test=backend_fw,
        frontend_method_data=frontend_method_data,
        init_flags=init_flags,
        method_flags=method_flags,
    )
  • We specify the function that is used to initialize the array, for TensorFlow, we use tensorflow.constant to create a tensorflow.EagerTensor.

  • We specify the method_tree to be tensorflow.EagerTensor.__add__() which is the path to the method in the frontend class.

PyTorch

# ivy_tests/test_ivy/test_frontends/test_torch/test_tensor.py
@handle_frontend_method(
    class_tree=CLASS_TREE,
    init_tree="torch.tensor",
    method_name="add",
    dtype_and_x=helpers.dtype_and_values(
        available_dtypes=helpers.get_dtypes("float"),
        num_arrays=2,
        min_value=-1e04,
        max_value=1e04,
        allow_inf=False,
    ),
    alpha=st.floats(min_value=-1e04, max_value=1e04, allow_infinity=False),
)
def test_torch_instance_add(
    dtype_and_x,
    alpha,
    frontend,
    backend_fw,
    frontend_method_data,
    init_flags,
    method_flags,
):
    input_dtype, x = dtype_and_x
    helpers.test_frontend_method(
        init_input_dtypes=input_dtype,
        init_all_as_kwargs_np={
            "data": x[0],
        },
        method_input_dtypes=input_dtype,
        method_all_as_kwargs_np={
            "other": x[1],
            "alpha": alpha,
        },
        frontend_method_data=frontend_method_data,
        init_flags=init_flags,
        method_flags=method_flags,
        frontend=frontend,
        backend_to_test=backend_fw,
        atol_=1e-02,
    )
  • We specify the function that is used to initialize the array, for PyTorch, we use torch.tensor to create a torch.Tensor.

  • We specify the method_tree to be torch.Tensor.__add__() which is the path to the method in the frontend class.

Hypothesis Helpers#

Naturally, many of the functions in the various frontend APIs are very similar to many of the functions in the Ivy API. Therefore, the unit tests will follow very similar structures with regards to the data generated for testing. There are many data generation helper functions defined in the Ivy API test files, such as _arrays_idx_n_dtypes() defined in ivy/ivy_tests/test_ivy/test_functional/test_core/test_manipulation.py. This helper generates: a set of concatenation-compatible arrays, the index for the concatenation, and the data types of each array. Not surprisingly, this helper is used for testing ivy.concat(), as shown here.

Clearly, this helper would also be very useful for testing the various frontend concatenation functions, such as jax.numpy.concatenate, numpy.concatenate, tensorflow.concat and torch.cat. We could simply copy and paste the implementation from /ivy_tests/test_ivy/test_functional/test_core/test_manipulation.py into each file /ivy_tests/test_ivy/test_frontends/test_<framework>/test_<group>.py, but this would result in needless duplication. Instead, we should simply import the helper function from the ivy test file into the frontend test file, like so from ivy_tests.test_ivy.test_frontends.test_manipulation import _arrays_idx_n_dtypes.

In cases where a helper function is uniquely useful for a frontend function without being useful for an Ivy function, then it should be implemented directly in /ivy_tests/test_ivy/test_frontends/test_<framework>/test_<group>.py rather than in /ivy_tests/test_ivy/test_functional/test_core/test_<closest_relevant_group>.py. However, as shown above, in many cases the same helper function can be shared between the Ivy API tests and the frontend tests, and we should strive for as much sharing as possible to minimize the amount of code.

Running Ivy Frontend Tests

The CI Pipeline runs the entire collection of Frontend Tests for the frontend that is being updated on every push to the repo.

You will need to make sure the Frontend Test is passing for each Ivy Frontend function you introduce/modify. If a test fails on the CI, you can see details about the failure under Details -> Run Frontend Tests as shown in `CI Pipeline`_.

You can also run the tests locally before making a PR. See the relevant Setting Up Testing in PyCharm section for instructions on how to do so.

Frontend Framework Testing Configuration#

To effectively test a frontend within our pipeline, it is essential to provide specific information about the framework we’re trying to test. This information includes how to create an array, return type checking, supported devices, and data types, etc.

All the required information for a frontend is stored in a configuration file, which serves as a reference for our testing pipeline. The process of incorporating a new frontend into our testing procedure involves simply writing a new config file for that framework. The configuration files are located at: ivy_tests/test_ivy/test_frontends/config/

Round Up

This should have hopefully given you a good understanding of Ivy Frontend Tests!

If you have any questions, please feel free to reach out on discord in the ivy frontends tests thread!

Video