General#

class ivy.data_classes.container.general._ContainerWithGeneral(dict_in=None, queues=None, queue_load_sizes=None, container_combine_method='list_join', queue_timeout=None, print_limit=10, key_length_limit=None, print_indent=4, print_line_spacing=0, ivyh=None, default_key_color='green', keyword_color_dict=None, rebuild_child_containers=False, types_to_iteratively_nest=None, alphabetical_keys=True, dynamic_backend=None, build_callable=False, **kwargs)[source]#

Bases: ContainerBase

_abc_impl = <_abc._abc_data object>#
static _static_all_equal(x1, *xs, equality_matrix=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.all_equal. This method simply wraps the function, and so the docstring for ivy.all_equal also applies to this method with minimal changes.

Parameters:
  • x1 (Container) – input container.

  • xs (Union[Iterable[Any], Container]) – arrays or containers to be compared to x1.

  • equality_matrix (Union[bool, Container], default: False) – Whether to return a matrix of equalities comparing each input with every other. Default is False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean, whether or not the inputs are equal, or matrix container of booleans if equality_matrix=True is set.

Examples

With one ivy.Container input:

>>> x1 = ivy.Container(a=ivy.array([1, 0, 1, 1]), b=ivy.array([1, -1, 0, 0]))
>>> x2 = ivy.array([1, 0, 1, 1])
>>> y = ivy.Container.static_all_equal(x1, x2, equality_matrix= False)
>>> print(y)
{
    a: ivy.array([True, True, True, True]),
    b: ivy.array([True, False, False, False])
}

With multiple ivy.Container input:

>>> x1 = ivy.Container(a=ivy.array([1, 0, 1, 1]),
...                    b=ivy.native_array([1, 0, 0, 1]))
>>> x2 = ivy.Container(a=ivy.native_array([1, 0, 1, 1]),
...                    b=ivy.array([1, 0, -1, -1]))
>>> y = ivy.Container.static_all_equal(x1, x2, equality_matrix= False)
>>> print(y)
{
    a: ivy.array([True, True, True, True]),
    b: ivy.array([True, True, False, False])
}
static _static_array_equal(x0, x1, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.array_equal. This method simply wraps the function, and so the docstring for ivy.array_equal also applies to this method with minimal changes.

Parameters:
  • x0 (Union[Array, NativeArray, Container]) – The first input container to compare.

  • x1 (Union[Array, NativeArray, Container]) – The second input container to compare.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A boolean container indicating whether the two containers are equal at each level.

Examples

>>> a = ivy.array([[0., 1.], [1. ,0.]])
>>> b = ivy.array([[-2., 1.], [1. ,2.]])
>>> c = ivy.array([[0., 1.], [1. ,0.]])
>>> d = ivy.array([[2., 1.], [1. ,2.]])
>>> a0 = ivy.Container(a = a, b = b)
>>> a1 = ivy.Container(a = c, b = d)
>>> y = ivy.Container.static_array_equal(a0, a1)
>>> print(y)
{
    a: true,
    b: false
}
static _static_assert_supports_inplace(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.assert_supports_inplace. This method simply wraps the function, and so the docstring for ivy.assert_supports_inplace also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – input container to check for inplace support for.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – True if support, raises exception otherwise`

static _static_clip_matrix_norm(x, max_norm, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, p=2.0, out=None)[source]#

ivy.Container static method variant of ivy.clip_matrix_norm. This method simply wraps the function, and so the docstring for ivy.clip_matrix_norm also applies to this method with minimal changes.

Parameters:
  • x (Union[Container, Array, NativeArray]) – Input array containing elements to clip.

  • max_norm (Union[float, Container]) – The maximum value of the array norm.

  • p (Union[float, Container], default: 2.0) – The p-value for computing the p-norm. Default is 2.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – An array with the matrix norm downscaled to the max norm if needed.

Examples

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([[0., 1., 2.]]),
...                   b=ivy.array([[3., 4., 5.]]))
>>> y = ivy.Container.static_clip_matrix_norm(x, 2.0)
>>> print(y)
{
    a: ivy.array([[0., 0.894, 1.79]]),
    b: ivy.array([[0.849, 1.13, 1.41]])
}
static _static_clip_vector_norm(x, max_norm, /, *, p=2.0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.clip_vector_norm. This method simply wraps the function, and so the docstring for ivy.clip_vector_norm also applies to this method with minimal changes.

Parameters:
  • x (Union[Container, Array, NativeArray]) – input array

  • max_norm (Union[float, Container]) – float, the maximum value of the array norm.

  • p (Union[float, Container], default: 2.0) – optional float, the p-value for computing the p-norm. Default is 2.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – An array with the vector norm downscaled to the max norm if needed.

Examples

With ivy.Container instance method:

>>> x = ivy.Container(a=ivy.array([0., 1., 2.]),b=ivy.array([3., 4., 5.]))
>>> y = ivy.Container.static_clip_vector_norm(x, 2.0)
>>> print(y)
{
    a: ivy.array([0., 0.894, 1.79]),
    b: ivy.array([0.849, 1.13, 1.41])
}
static _static_einops_rearrange(x, pattern, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None, **axes_lengths)[source]#

ivy.Container static method variant of ivy.einops_rearrange. This method simply wraps the function, and so the docstring for ivy.einops_rearrange also applies to this method with minimal changes.

Parameters:
  • pattern (Union[str, Container]) – Rearrangement pattern.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • axes_lengths (Union[Dict[str, int], Container]) – Any additional specifications for dimensions.

Return type:

Container

Returns:

ivy.Container with each array having einops.rearrange applied.

Examples

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([[1, 2, 3],
...                                [-4, -5, -6]]),
...                 b=ivy.array([[7, 8, 9],
...                             [10, 11, 12]]))
>>> y = ivy.static_einops_rearrange(x, "height width -> width height")
>>> print(y)
{
    a: ivy.array([[1, -4],
                [2, -5],
                [3, -6]]),
    b: ivy.array([[7, 10],
                [8, 11],
                [9, 12]])
}
>>> x = ivy.Container(a=ivy.array([[[ 1,  2,  3],
...                  [ 4,  5,  6]],
...               [[ 7,  8,  9],
...                  [10, 11, 12]]]))
>>> y = ivy.static_einops_rearrange(x, "c h w -> c (h w)")
>>> print(y)
{
    a: (<class ivy.array.array.Array> shape=[2, 6])
}
>>> x = ivy.Container(a=ivy.array([[1, 2, 3, 4, 5, 6],
...               [7, 8, 9, 10, 11, 12]]))
>>> y = ivy.static_einops_rearrange(x, "c (h w) -> (c h) w", h=2, w=3)
{
    a: (<class ivy.array.array.Array> shape=[4, 3])
}
static _static_einops_reduce(x, pattern, reduction, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None, **axes_lengths)[source]#

Perform einops reduce operation on each sub array in the container.

Parameters:
  • x (Container) – input container.

  • pattern (Union[str, Container]) – Reduction pattern.

  • reduction (Union[str, Container]) – One of available reductions (‘min’, ‘max’, ‘sum’, ‘mean’, ‘prod’), or callable.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • axes_lengths (Union[Dict[str, int], Container]) – Any additional specifications for dimensions.

  • out (Optional[Container], default: None) – optional array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ivy.Container with each array having einops.reduce applied.

Examples

>>> x = ivy.Container(a=ivy.array([[-4.47, 0.93, -3.34],
...                                [3.66, 24.29, 3.64]]),
...                   b=ivy.array([[4.96, 1.52, -10.67],
...                                [4.36, 13.96, 0.3]]))
>>> reduced = ivy.Container.static_einops_reduce(x, 'a b -> a', 'mean')
>>> print(reduced)
{
    a: ivy.array([-2.29333329, 10.53000069]),
    b: ivy.array([-1.39666676, 6.20666695])
}
static _static_einops_repeat(x, pattern, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None, **axes_lengths)[source]#

Perform einops repeat operation on each sub array in the container.

Parameters:
  • x (Container) – input container.

  • pattern (Union[str, Container]) – Rearrangement pattern.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • axes_lengths (Union[Dict[str, int], Container]) – Any additional specifications for dimensions.

  • **axes_lengths

Return type:

Container

Returns:

ivy.Container with each array having einops.repeat applied.

Examples

>>> x = ivy.Container(a=ivy.array([[30, 40], [50, 75]]),
...                   b=ivy.array([[1, 2], [4, 5]]))
>>> repeated = ivy.Container.static_einops_repeat(
...    x, 'h w -> (tile h) w', tile=2)
>>> print(repeated)
{
    a: ivy.array([[30, 40],
                [50, 75],
                [30, 40],
                [50, 75]]),
    b: ivy.array([[1, 2],
                [4, 5],
                [1, 2],
                [4, 5]])
}
static _static_exists(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.exists. This method simply wraps the function, and so the docstring for ivy.exists also applies to this method with minimal changes.

Parameters:
  • x (Container) – The input container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A boolean container detailing if any of the leaf nodes are None. True if not None, False if None.

Examples

>>> x = ivy.Container(a=ivy.array([0,4,5]), b=ivy.array([2,2,0]))
>>> y = x._static_exists(x)
>>> print(y)
{ a: True, b: True }
>>> x = ivy.Container(a=[1,2], b=None)
>>> y = x._static_exists(x)
>>> print(y)
{ a: True, b: False }
>>> x = ivy.Container(a={"d": 1, "c": 3}, b={"d": 20, "c": None})
>>> y = x._static_exists(x)
>>> print(y)
{ a: { c: True, d: True }, b: { c: False, d: True } }
static _static_fourier_encode(x, max_freq, /, *, num_bands=4, linear=False, flatten=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.fourier_encode. This method simply wraps the function, and so the docstring for ivy.fourier_encode also applies to this method with minimal changes.

Parameters:
  • x (Union[Container, Array, NativeArray]) – Input container to apply fourier_encode.

  • max_freq (Union[float, Array, NativeArray, Container]) – The maximum frequency of the encoding.

  • num_bands (Union[int, Container], default: 4) – The number of frequency bands for the encoding. Default is 4.

  • linear (Union[bool, Container], default: False) – Whether to space the frequency bands linearly as opposed to geometrically. Default is False.

  • flatten (Union[bool, Container], default: False) – Whether to flatten the position dimension into the batch dimension. Default is False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – New container with the final dimension expanded of arrays at its leaves, and the encodings stored in this channel.

Examples

>>> x = ivy.Container(a = ivy.array([1,2]),
...                   b = ivy.array([3,4]))
>>> y = 1.5
>>> z = ivy.Container.static_fourier_encode(x, y)
>>> print(z)
{
    a: (<classivy.array.array.Array>shape=[2,9]),
    b: (<classivy.array.array.Array>shape=[2,9])
}
>>> x = ivy.Container(a = ivy.array([3,10]),
...                   b = ivy.array([4,8]))
>>> y = 2.5
>>> z = ivy.Container.static_fourier_encode(x, y, num_bands=3)
>>> print(z)
{
    a: ivy.array([[ 3.0000000e+00, 3.6739404e-16, 3.6739404e-16,
            3.6739404e-16, -1.0000000e+00, -1.0000000e+00, -1.0000000e+00],
            [ 1.0000000e+01, -1.2246468e-15, -1.2246468e-15, -1.2246468e-15,
            1.0000000e+00,  1.0000000e+00,  1.0000000e+00]]),
    b: ivy.array([[ 4.00000000e+00, -4.89858720e-16, -4.89858720e-16,
            -4.89858720e-16, 1.00000000e+00,  1.00000000e+00,  1.00000000e+00],
            [ 8.00000000e+00, -9.79717439e-16, -9.79717439e-16, -9.79717439e-16,
            1.00000000e+00,  1.00000000e+00,  1.00000000e+00]])
}
static _static_gather(params, indices, /, *, axis=-1, batch_dims=0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container static method variant of ivy.gather. This method simply wraps the function, and so the docstring for ivy.gather also applies to this method with minimal changes.

Parameters:
  • params (Union[Container, Array, NativeArray]) – The container from which to gather values.

  • indices (Union[Container, Array, NativeArray]) – The container or array which indicates the indices that will be gathered along the specified axis.

  • axis (Union[int, Container], default: -1) – The axis from which the indices will be gathered. Default is -1.

  • batch_dims (Union[int, Container], default: 0) – optional int, lets you gather different items from each element of a batch.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – Optional array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – New container with the values gathered at the specified indices along the specified axis.

Examples

With ivy.Container input:

>>> x = ivy.Container(a = ivy.array([0., 1., 2.]),
...                   b = ivy.array([4., 5., 6.]))
>>> y = ivy.Container(a = ivy.array([0, 1]),
...                   b = ivy.array([1, 2]))
>>> print(ivy.Container.static_gather(x, y))
{
    a: ivy.array([0., 1.]),
    b: ivy.array([5., 6.])
}

With a mix of ivy.Array and ivy.Container inputs:

>>> x = ivy.Container(a = ivy.array([0., 1., 2.]),
...                   b = ivy.array([4., 5., 6.]))
>>> y = ivy.array([0, 1])
>>> z = ivy.Container.static_gather(x, y)
>>> print(z)
{
    a: ivy.array([0., 1.]),
    b: ivy.array([4., 5.])
}
static _static_gather_nd(params, indices, /, *, batch_dims=0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

Gather slices from all container params into a arrays with shape specified by indices.

Parameters:
  • params (Union[Container, Array, NativeArray]) – The container from which to gather values.

  • indices (Union[Container, Array, NativeArray]) – Index array.

  • batch_dims (Union[int, Container], default: 0) – optional int, lets you gather different items from each element of a batch.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

Container object with all sub-array dimensions gathered.

Examples

>>> x = ivy.Container(a=ivy.array([[0., 10., 20.],[30.,40.,50.]]),
...                   b=ivy.array([[0., 100., 200.],[300.,400.,500.]]))
>>> y = ivy.Container(a=ivy.array([1,0]),
...                   b=ivy.array([0]))
>>> print(ivy.Container.static_gather_nd(x, y))
{
    a: ivy.array(30.),
    b: ivy.array([0., 100., 200.])
}
static _static_get_num_dims(x, /, *, as_array=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.get_num_dims. This method simply wraps the function, and so the docstring for ivy.get_num_dims also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – ivy.Container to infer the number of dimensions for

  • as_array (Union[bool, Container], default: False) – Whether to return the shape as a array, default False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Shape of the array

Examples

>>> x = ivy.Container(b = ivy.asarray([[0.,1.,1.],[1.,0.,0.],[8.,2.,3.]]))
>>> ivy.Container.static_get_num_dims(x)
{
    b: 2
}
>>> x = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]]
...                                    [[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]))
>>> ivy.Container.static_get_num_dims(x)
{
    b: 3
}
>>> x = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]),
...                                    c = ivy.asarray([[0.,1.,1.],[8.,2.,3.]]))
>>> ivy.Container.static_get_num_dims(x)
{
    b: 3,
    c: 2
}
>>> ivy.Container.static_get_num_dims(x, as_array=True)
{
    b: ivy.array(3),
    c: ivy.array(2)
}
static _static_has_nans(x, /, *, include_infs=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

Determine whether arrays in the container contain any nans, as well as infs or -infs if specified.

Parameters:
  • x (Container) – The container to check for nans.

  • include_infs (Union[bool, Container], default: True) – Whether to include infs and -infs in the check. Default is True.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

Whether the container has any nans, applied either leafwise or across the entire container.

Examples

>>> x = ivy.Container(a=ivy.array([1, 2]), b=ivy.array([float('nan'), 2]))
>>> y = ivy.Container.static_has_nans(x)
>>> print(y)
{
    a: false,
    b: true
}
static _static_inplace_decrement(x, val, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.inplace_decrement. This method simply wraps the function, and so the docstring for ivy.inplace_decrement also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – The input array to be decremented by the defined value.

  • val (Union[Array, NativeArray, Container]) – The value of decrement.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – The array following an in-place decrement.

Examples

Decrement by a value

>>> x = ivy.Container(a=ivy.array([0.5, -5., 30.]),b=ivy.array([0., -25., 50.]))
>>> y = ivy.inplace_decrement(x, 1.5)
>>> print(y)
{
    a: ivy.array([-1., -6.5, 28.5]),
    b: ivy.array([-1.5, -26.5, 48.5])
}

Decrement by a Container

>>> x = ivy.Container(a=ivy.array([0., 15., 30.]), b=ivy.array([0., 25., 50.]))
>>> y = ivy.Container(a=ivy.array([0., 15., 30.]), b=ivy.array([0., 25., 50.]))
>>> z = ivy.inplace_decrement(x, y)
>>> print(z)
{
    a: ivy.array([0., 0., 0.]),
    b: ivy.array([0., 0., 0.])
}
>>> x = ivy.Container(a=ivy.array([3., 7., 10.]), b=ivy.array([0., 75., 5.5]))
>>> y = ivy.Container(a=ivy.array([2., 5.5, 7.]), b=ivy.array([0., 25., 2.]))
>>> z = ivy.inplace_decrement(x, y)
>>> print(z)
{
    a: ivy.array([1., 1.5, 3.]),
    b: ivy.array([0., 50., 3.5])
}
static _static_inplace_increment(x, val, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.inplace_increment. This method simply wraps the function, and so the docstring for ivy.inplace_increment also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – The input array to be incremented by the defined value.

  • val (Union[Array, NativeArray, Container]) – The value of increment.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – The array following an in-place increment.

Examples

Increment by a value

>>> x = ivy.Container(a=ivy.array([0.5, -5., 30.]),b=ivy.array([0., -25., 50.]))
>>> y = ivy.inplace_increment(x, 1.5)
>>> print(y)
{
    a: ivy.array([2., -3.5, 31.5]),
    b: ivy.array([1.5, -23.5, 51.5])
}

Increment by a Container

>>> x = ivy.Container(a=ivy.array([0., 15., 30.]), b=ivy.array([0., 25., 50.]))
>>> y = ivy.Container(a=ivy.array([0., 15., 30.]), b=ivy.array([0., 25., 50.]))
>>> z = ivy.inplace_increment(x, y)
>>> print(z)
{
    a: ivy.array([0., 30., 60.]),
    b: ivy.array([0., 50., 100.])
}
>>> x = ivy.Container(a=ivy.array([3., 7., 10.]), b=ivy.array([0., 75., 5.5]))
>>> y = ivy.Container(a=ivy.array([2., 5.5, 7.]), b=ivy.array([0., 25., 2.]))
>>> z = ivy.inplace_increment(x, y)
>>> print(z)
{
    a: ivy.array([5., 12.5, 17.]),
    b: ivy.array([0., 100., 7.5])
}
static _static_inplace_update(x, val, /, *, ensure_in_backend=False, keep_input_dtype=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.inplace_update. This method simply wraps the function, and so the docstring for ivy.inplace_update also applies to this method with minimal changes.

Parameters:
  • x (Union[Container, Array, NativeArray]) – input container to be updated inplace

  • val (Union[Container, Array, NativeArray]) – value to update the input container with

  • ensure_in_backend (Union[bool, Container], default: False) – Whether to ensure that the ivy.NativeArray is also inplace updated. In cases where it should be, backends which do not natively support inplace updates will raise an exception.

  • keep_input_dtype (Union[bool, Container], default: False) – Whether or not to preserve x data type after the update, otherwise val data type will be applied. Defaults to False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – An array with the vector norm downscaled to the max norm if needed.

static _static_is_array(x, /, *, exclusive=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.is_array. This method simply wraps the function, and so the docstring for ivy.ivy.is_array also applies to this method with minimal changes.

Parameters:
  • x (Container) – The input to check

  • exclusive (Union[bool, Container], default: False) – Whether to check if the data type is exclusively an array, rather than a variable or traced array.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out – optional output, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – Boolean, whether or not x is an array.

Examples

>>> x = ivy.Container(a=ivy.array([1]), b=ivy.native_array([2, 3]))
>>> y = ivy.Container.static_is_array(x)
>>> print(y)
{
    a: true,
    b: true
}
static _static_is_ivy_array(x, /, *, exclusive=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.is_ivy_array. This method simply wraps the function, and so the docstring for ivy.is_ivy_array also applies to this method with minimal changes.

Parameters:
  • x (Container) – The input to check

  • exclusive (Union[bool, Container], default: False) – Whether to check if the data type is exclusively an array, rather than a variable or traced array.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

  • ret – Boolean, whether or not x is an array.

  • >>> x = ivy.Container(a=ivy.array([1]), b=ivy.native_array([2, 3]))

  • >>> y = ivy.Container.static_is_ivy_array(x)

  • >>> print(y)

  • { – a: true, b: false

  • }

static _static_is_native_array(x, /, *, exclusive=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.is_native_array. This method simply wraps the function, and so the docstring for ivy.is_native_array also applies to this method with minimal changes.

Parameters:
  • x (Container) – The input to check

  • exclusive (Union[bool, Container], default: False) – Whether to check if the data type is exclusively an array, rather than a variable or traced array.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean, whether or not x is a native array.

Examples

>>> x = ivy.Container(a=ivy.array([1]), b=ivy.native_array([2, 3]))
>>> y = ivy.Container.static_is_native_array(x)
>>> print(y)
{
    a: false,
    b: true
}
static _static_scatter_flat(indices, updates, /, *, size=None, reduction='sum', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container static method variant of ivy.scatter_flat. This method simply wraps the function, and so the docstring for ivy.scatter_flat also applies to this method with minimal changes.

Parameters:
  • indices (Union[Array, NativeArray, Container]) – Index array or container.

  • updates (Union[Array, NativeArray, Container]) – values to update input tensor with

  • size (Optional[Union[int, Container]], default: None) – The size of the result. Default is None, in which case tensor argument out must be provided.

  • reduction (Union[str, Container], default: 'sum') – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ref – New container of given shape, with the values updated at the indices.

static _static_scatter_nd(indices, updates, /, shape=None, *, reduction='sum', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container static method variant of ivy.scatter_nd. This method simply wraps the function, and so the docstring for ivy.scatter_nd also applies to this method with minimal changes.

Parameters:
  • indices (Union[Array, NativeArray, Container]) – Index array or container.

  • updates (Union[Array, NativeArray, Container]) – values to update input tensor with

  • shape (Optional[Union[Array, NativeArray, Container]], default: None) – The shape of the result. Default is None, in which case tensor argument must be provided.

  • reduction (Union[str, Container], default: 'sum') – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ref – New container of given shape, with the values updated at the indices.

Examples

scatter into an empty array

>>> indices = ivy.Container(a=ivy.array([[5],[6],[7]]),
...                         b=ivy.array([[2],[3],[4]]))
>>> updates = ivy.Container(a=ivy.array([50, 60, 70]),
...                         b=ivy.array([20, 30, 40]))
>>> shape = ivy.Container(a=ivy.array([10]),
...                       b=ivy.array([10]))
>>> z = ivy.Container.static_scatter_nd(indices, updates, shape=shape)
>>> print(z)
{
    a: ivy.array([0, 0, 0, 0, 0, 50, 60, 70, 0, 0]),
    b: ivy.array([0, 0, 20, 30, 40, 0, 0, 0, 0, 0])
}

scatter into a container

>>> indices = ivy.Container(a=ivy.array([[5],[6],[7]]),
...          b=ivy.array([[2],[3],[4]]))
>>> updates = ivy.Container(a=ivy.array([50, 60, 70]),
...                         b=ivy.array([20, 30, 40]))
>>> z = ivy.Container(a=ivy.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
...                   b=ivy.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))
>>> ivy.Container.static_scatter_nd(indices, updates,
...                                    reduction='replace', out = z)
>>> print(z)
{
    a: ivy.array([1, 2, 3, 4, 5, 50, 60, 70, 9, 10]),
    b: ivy.array([1, 2, 20, 30, 40, 6, 7, 8, 9, 10])
}
static _static_size(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.size. This method simply wraps the function, and so the docstring for ivy.size also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – ivy.Container to infer the number of elements for

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Number of elements of the array

Examples

>>> x = ivy.Container(b = ivy.asarray([[0.,1.,1.],[1.,0.,0.],[8.,2.,3.]]))
>>> ivy.Container.static_size(x)
{
    b: 9
}
>>> x = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]]
...                                    [[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]))
>>> ivy.Container.static_size(x)
{
    b: 27
}
>>> x = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]),
...                                    c = ivy.asarray([[0.,1.,1.],[8.,2.,3.]]))
>>> ivy.Container.static_size(x)
{
    b: 18,
    c: 6,
}
static _static_stable_divide(numerator, denominator, /, *, min_denominator=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.stable_divide. This method simply wraps the function, and so the docstring for ivy.stable_divide also applies to this method with minimal changes.

Parameters:
  • numerator (Container) – Container of the numerators of the division.

  • denominator (Union[Number, Array, Container]) – Container of the denominators of the division.

  • min_denominator (Optional[Union[Number, Array, NativeArray, Container]], default: None) – Container of the minimum denominator to use, use global ivy.min_denominator by default.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container of elements containing the new items following the numerically stable division.

Examples

>>> x = ivy.Container(a=ivy.asarray([10., 15.]), b=ivy.asarray([20., 25.]))
>>> y = ivy.Container.stable_divide(x, 0.5)
>>> print(y)
{
    a: ivy.array([20., 30.]),
    b: ivy.array([40., 50.])
}
>>> x = ivy.Container(a=1, b=10)
>>> y = ivy.asarray([4, 5])
>>> z = ivy.Container.stable_divide(x, y)
>>> print(z)
{
    a: ivy.array([0.25, 0.2]),
    b: ivy.array([2.5, 2.])
}
>>> x = ivy.Container(a=1, b=10)
>>> y = np.array((4.5, 9))
>>> z = ivy.Container.stable_divide(x, y)
>>> print(z)
{
    a: array([0.22222222, 0.11111111]),
    b: array([2.22222222, 1.11111111])
}
>>> x = ivy.Container(a=ivy.asarray([1., 2.]), b=ivy.asarray([3., 4.]))
>>> y = ivy.Container(a=ivy.asarray([0.5, 2.5]), b=ivy.asarray([3.5, 0.4]))
>>> z = ivy.Container.stable_divide(x, y)
>>> print(z)
{
    a: ivy.array([2., 0.8]),
    b: ivy.array([0.857, 10.])
}
>>> x = ivy.Container(a=ivy.asarray([1., 2.], [3., 4.]),
...                   b=ivy.asarray([5., 6.], [7., 8.]))
>>> y = ivy.Container(a=ivy.asarray([0.5, 2.5]), b=ivy.asarray([3.5, 0.4]))
>>> z = ivy.Container.stable_divide(x, y, min_denominator=2)
>>> print(z)
{
    a: ivy.array([0.4, 0.444]),
    b: ivy.array([0.909, 2.5])
}
static _static_stable_pow(base, exponent, /, *, min_base=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.stable_pow. This method simply wraps the function, and so the docstring for ivy.stable_pow also applies to this method with minimal changes.

Parameters:
  • base (Container) – Container of the base.

  • exponent (Union[Number, Array, Container]) – Container of the exponent.

  • min_base (Optional[Union[float, Container]], default: None) – The minimum base to use, use global ivy.min_base by default.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container of elements containing the new items following the numerically stable power.

Examples

>>> x = ivy.Container(a=ivy.asarray([2, 4]), b=ivy.asarray([6, 8]))
>>> y = ivy.Container.stable_pow(x, 2)
>>> print(y)
{
    a: ivy.array([4.00004, 16.00008]),
    b: ivy.array([36.00012, 64.00016])
}
>>> x = ivy.Container(a=4, b=8)
>>> y = ivy.Container.stable_pow(x, 2)
>>> print(y)
{
    a: ivy.array(16.00008),
    b: ivy.array(64.00016)
}
>>> x = ivy.Container(a=4, b=8)
>>> y = ivy.asarray([1, 2])
>>> z = ivy.Container.stable_pow(x, y)
>>> print(z)
{
    a: ivy.array([4.00001, 16.00008]),
    b: ivy.array([8.00001, 64.00016])
}
>>> x = ivy.Container(a=ivy.asarray([2, 4]), b=ivy.asarray([6, 8]))
>>> y = ivy.Container(a=4, b=8)
>>> z = ivy.Container.stable_pow(x, y)
>>> print(z)
{
    a: ivy.array([16.00032, 256.00256]),
    b: ivy.array([1679638.395, 16777383.77])
}
static _static_supports_inplace_updates(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.supports_inplace_updates. This method simply wraps the function, and so the docstring for ivy.supports_inplace_updates also applies to this method with minimal changes.

Parameters:
  • x (Container) – An ivy.Container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – An ivy.Container instance of bool values. True if nodes of x support in-place operations. False otherwise.

static _static_to_list(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.to_list. This method simply wraps the function, and so the docstring for ivy.to_list also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – input container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container with list representation of the leave arrays.

Examples

With one ivy.Container inputs:

>>> x = ivy.Container(a=ivy.array([0, 1, 2]))
>>> y = ivy.Container.static_to_list(x)
>>> print(y)
{a:[0,1,2]}
static _static_to_numpy(x, /, *, copy=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.to_numpy. This method simply wraps the function, and so the docstring for ivy.to_numpy also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – input container.

  • copy (Union[bool, Container], default: True) – Whether to copy the input. Default is True.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – a container of numpy arrays copying all the element of the container self.

Examples

With one ivy.Container input:

>>> x = ivy.Container(a=ivy.array([1, 0, 1, 1]),
...                   b=ivy.array([1, -1, 0, 0]))
>>> y = ivy.Container.static_to_numpy(x)
>>> print(y)
{
    a: array([1, 0, 1, 1], dtype=int32),
    b: array([1, -1, 0, 0], dtype=int32)
}
>>> x = ivy.Container(a=ivy.array([1., 0., 0., 1.]),
...                   b=ivy.native_array([1, 1, -1, 0]))
>>> y = ivy.Container.static_to_numpy(x)
>>> print(y)
{
    a: array([1., 0., 0., 1.], dtype=float32),
    b: array([1, 1, -1, 0], dtype=int32)
}
static _static_to_scalar(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.to_scalar. This method simply wraps the function, and so the docstring for ivy.to_scalar also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – input container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – a container of scalar values copying all the element of the container x.

Examples

With one ivy.Container input:

>>> x = ivy.Container(a=ivy.array([-1]), b=ivy.array([3]))
>>> y = ivy.Container.static_to_scalar(x)
>>> print(y)
{
    a: -1,
    b: 3
}
static _static_value_is_nan(x, /, *, include_infs=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container static method variant of ivy.value_is_nan. This method simply wraps the function, and so the docstring for ivy.value_is_nan also applies to this method with minimal changes.

Parameters:
  • x (Union[Array, NativeArray, Container]) – input container.

  • include_infs (Union[bool, Container], default: True) – Whether to include infs and -infs in the check. Default is True.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean as to whether the input value is a nan or not.

Examples

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([452]), b=ivy.array([float('inf')]))
>>> y = ivy.Container.static_value_is_nan(x)
>>> print(y)
{
    a: False,
    b: True
}

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([float('nan')]), b=ivy.array([0]))
>>> y = ivy.Container.static_value_is_nan(x)
>>> print(y)
{
    a: True,
    b: False
}

With ivy.Container input:

>>> x = ivy.Container(a=ivy.array([float('inf')]), b=ivy.array([22]))
>>> y = ivy.Container.static_value_is_nan(x, include_infs=False)
>>> print(y)
{
    a: False,
    b: False
}
all_equal(*xs, equality_matrix=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.all_equal. This method simply wraps the function, and so the docstring for ivy.all_equal also applies to this method with minimal changes.

Parameters:
  • self (Container) – input container.

  • xs (Union[Iterable[Any], Container]) – arrays or containers to be compared to self.

  • equality_matrix (Union[bool, Container], default: False) – Whether to return a matrix of equalities comparing each input with every other. Default is False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean, whether or not the inputs are equal, or matrix container of booleans if equality_matrix=True is set.

Examples

With one ivy.Container instances:

>>> x1 = ivy.Container(a=ivy.array([1, 0, 1, 1]), b=ivy.array([1, -1, 0, 0]))
>>> x2 = ivy.array([1, 0, 1, 1])
>>> y = x1.all_equal(x2, equality_matrix= False)
>>> print(y)
{
    a: True,
    b: False
}
>>> x1 = ivy.Container(a=ivy.array([1, 0, 1, 1]), b=ivy.array([1, -1, 0, 0]))
>>> x2 = ivy.array([1, 0, 1, 1])
>>> y = x1.all_equal(x2, equality_matrix= False)
>>> print(y)
{
    a: True,
    b: False
}

With multiple ivy.Container instances:

>>> x1 = ivy.Container(a=ivy.native_array([1, 0, 0]),
...                    b=ivy.array([1, 2, 3]))
>>> x2 = ivy.Container(a=ivy.native_array([1, 0, 1]),
...                    b=ivy.array([1, 2, 3]))
>>> y = x1.all_equal(x2, equality_matrix= False)
>>> print(y)
{
    a: False,
    b: True
}
>>> x1 = ivy.Container(a=ivy.native_array([1, 0, 0]),
...                    b=ivy.array([1, 2, 3]))
>>> x2 = ivy.Container(a=ivy.native_array([1, 0, 1]),
...                    b=ivy.array([1, 2, 3]))
>>> y = x1.all_equal(x2, equality_matrix= False)
>>> print(y)
{
    a: False,
    b: True
}
array_equal(x, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.array_equal. This method simply wraps the function, and so the docstring for ivy.array_equal also applies to this method with minimal changes.

Parameters:
  • self (Union[Array, NativeArray, Container]) – The first input container to compare.

  • x (Union[Array, NativeArray, Container]) – The second input container to compare.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A boolean container indicating whether the two containers are equal at each level.

Examples

>>> a = ivy.array([[0., 1.], [1. ,0.]])
>>> b = ivy.array([[-2., 1.], [1. ,2.]])
>>> c = ivy.array([[0., 1.], [1. ,0.]])
>>> d = ivy.array([[2., 1.], [1. ,2.]])
>>> a1 = ivy.Container(a = a, b = b)
>>> a2 = ivy.Container(a = c, b = d)
>>> y = a1.array_equal(a2)
>>> print(y)
{
    a: True,
    b: False
}
>>> x1 = ivy.Container(a=ivy.native_array([1, 0, 0]),
                       b=ivy.array([1, 2, 3]))
>>> x2 = ivy.Container(a=ivy.native_array([1, 0, 1]),
                       b=ivy.array([1, 2, 3]))
>>> y = x1.array_equal(x2)
>>> print(y)
{
    a: False,
    b: True
}
assert_supports_inplace(*, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.assert_supports_inplace. This method simply wraps the function, and so the docstring for ivy.assert_supports_inplace also applies to this method with minimal changes.

Parameters:
  • x – input container to check for inplace support for.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – An ivy.Container instance of True bool values if nodes of the Container support in-place operations, raises IvyBackendException otherwise

Examples

>>> ivy.set_backend("numpy")
>>> x = ivy.Container(a=ivy.array([5, 6]), b=ivy.array([7, 8]))
>>> print(x.assert_supports_inplace())
{
    a: True,
    b: True
}
clip_matrix_norm(max_norm, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, p=2.0, out=None)[source]#

ivy.Container instance method variant of ivy.clip_matrix_norm. This method simply wraps the function, and so the docstring for ivy.clip_matrix_norm also applies to this method with minimal changes.

Parameters:
  • self (Container) – Input array containing elements to clip.

  • max_norm (Union[float, Container]) – The maximum value of the array norm.

  • p (Union[float, Container], default: 2.0) – The p-value for computing the p-norm. Default is 2.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – An array with the matrix norm downscaled to the max norm if needed.

Examples

With ivy.Container instance method:

>>> x = ivy.Container(a=ivy.array([[0., 1., 2.]]),
...                   b=ivy.array([[3., 4., 5.]]))
>>> y = x.clip_matrix_norm(2.0, p=1.0)
>>> print(y)
{
    a: ivy.array([[0., 1., 2.]]),
    b: ivy.array([[1.2, 1.6, 2.]])
}
clip_vector_norm(max_norm, /, *, p=2.0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.clip_vector_norm. This method simply wraps the function, and so the docstring for ivy.clip_vector_norm also applies to this method with minimal changes.

Parameters:
  • self (Container) – input array

  • max_norm (Union[float, Container]) – float, the maximum value of the array norm.

  • p (Union[float, Container], default: 2.0) – optional float, the p-value for computing the p-norm. Default is 2.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – An array with the vector norm downscaled to the max norm if needed.

Examples

With ivy.Container instance method:

>>> x = ivy.Container(a=ivy.array([0., 1., 2.]),
...                   b=ivy.array([3., 4., 5.]))
>>> y = x.clip_vector_norm(2.0, p=1.0)
>>> print(y)
{
    a: ivy.array([0., 0.667, 1.33]),
    b: ivy.array([0.5, 0.667, 0.833])
}
einops_rearrange(pattern, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None, **axes_lengths)[source]#

ivy.Container instance method variant of ivy.einops_rearrange. This method simply wraps the function, and so the docstring for ivy.einops_rearrange also applies to this method with minimal changes.

Parameters:
  • pattern (Union[str, Container]) – Rearrangement pattern.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • axes_lengths (Union[Dict[str, int], Container]) – Any additional specifications for dimensions.

  • **axes_lengths

Returns:

ivy.Container with each array having einops.rearrange applied.

Examples

>>> x = ivy.Container(a=ivy.array([[1, 2, 3],
...                                [-4, -5, -6]]),
...                 b=ivy.array([[7, 8, 9],
...                              [10, 11, 12]]))
>>> y = x.einops_rearrange("height width -> width height")
>>> print(y)
{
    a: ivy.array([[1, -4],
                [2, -5],
                [3, -6]]),
    b: ivy.array([[7, 10],
                [8, 11],
                [9, 12]])
}
>>> x = ivy.Container(a=ivy.array([[[ 1,  2,  3],
...                  [ 4,  5,  6]],
...               [[ 7,  8,  9],
...                  [10, 11, 12]]]))
>>> y = x.einops_rearrange("c h w -> c (h w)")
>>> print(y)
{
    a: (<class ivy.data_classes.array.array.Array> shape=[2, 6])
}
>>> x = ivy.Container(a=ivy.array([[1, 2, 3, 4, 5, 6],
...               [7, 8, 9, 10, 11, 12]]))
>>> y = x.einops_rearrange("c (h w) -> (c h) w", h=2, w=3)
>>> print(y)
{
    a: (<class ivy.data_classes.array.array.Array> shape=[4, 3])
}
einops_reduce(pattern, reduction, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None, **axes_lengths)[source]#

ivy.Container instance method variant of ivy.einops_reduce. This method simply wraps the function, and so the docstring for ivy.einops_reduce also applies to this method with minimal changes.

Parameters:
  • self (Container) – Input container to be reduced.

  • pattern (Union[str, Container]) – Reduction pattern.

  • reduction (Union[str, Callable, Container]) – One of available reductions (‘min’, ‘max’, ‘sum’, ‘mean’, ‘prod’), or callable.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

  • axes_lengths (Union[Dict[str, int], Container]) – Any additional specifications for dimensions.

Return type:

Container

Returns:

ret – New container with einops.reduce having been applied.

Examples

>>> x = ivy.Container(a=ivy.array([[[5, 4, 3],
...                                 [11, 2, 9]],
...                                [[3, 5, 7],
...                                 [9, 7, 1]]]),
...                    b=ivy.array([[[9,7,6],
...                                  [5,2,1]],
...                                 [[4,1,2],
...                                  [2,3,6]],
...                                 [[1, 9, 6],
...                                  [0, 2, 1]]]))
>>> reduced = x.einops_reduce('a b c -> a b', 'sum')
>>> print(reduced)
{
    a: ivy.array([[12, 22],
                [15, 17]]),
    b: ivy.array([[22, 8],
                [7, 11],
                [16, 3]])
}
einops_repeat(pattern, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None, **axes_lengths)[source]#

ivy.Container instance method variant of ivy.einops_repeat. This method simply wraps the function, and so the docstring for ivy.einops_repeat also applies to this method with minimal changes.

Parameters:
  • self (Container) – Input array or container to be repeated.

  • pattern (Union[str, Container]) – Rearrangement pattern.

  • axes_lengths (Union[Dict[str, int], Container]) – Any additional specifications for dimensions.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – New container with einops.repeat having been applied.

Examples

>>> x = ivy.Container(a=ivy.array([[30, 40], [50, 75]]),
...                   b=ivy.array([[1, 2], [4, 5]]))
>>> repeated = x.einops_repeat('h w ->  h  (w tile)', tile=2)
>>> print(repeated)
{
    a: ivy.array([[30, 30, 40, 40],
                  [50, 50, 75, 75]]),
    b: ivy.array([[1, 1, 2, 2],
                  [4, 4, 5, 5]])
}
exists(*, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.exists. This method simply wraps the function, and so the docstring for ivy.exists also applies to this method with minimal changes.

Parameters:
  • self (Container) – The input container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A boolean container detailing if any of the leaf nodes are None. True if not None, False if None.

Examples

>>> x = ivy.Container(a=[1,2,3,4], b=[])
>>> y = x.exists()
>>> print(y)
{ a: True, b: True }
>>> x = ivy.Container(a=None, b=[1,2])
>>> y = x.exists()
>>> print(y)
{ a: False, b: True }
>>> x = ivy.Container(a={"d": 1, "c": 3}, b=None)
>>> y = x.exists()
>>> print(y)
{ a: { c: True, d: True }, b: False }
fourier_encode(max_freq, /, *, num_bands=4, linear=False, flatten=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.fourier_encode. This method simply wraps the function, and so the docstring for ivy.fourier_encode also applies to this method with minimal changes.

Parameters:
  • self (Container) – Input container to apply fourier_encode at leaves.

  • max_freq (Union[float, Array, NativeArray, Container]) – The maximum frequency of the encoding.

  • num_bands (Union[int, Container], default: 4) – The number of frequency bands for the encoding. Default is 4.

  • linear (Union[bool, Container], default: False) – Whether to space the frequency bands linearly as opposed to geometrically. Default is False.

  • flatten (Union[bool, Container], default: False) – Whether to flatten the position dimension into the batch dimension. Default is False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • dtype – Data type of the returned array. Default is None.

  • out – Optional output container. Default is None.

Return type:

Container

Returns:

ret – New container with the final dimension expanded of arrays at its leaves, and the encodings stored in this channel.

Examples

>>> x = ivy.Container(a = ivy.array([1,2]),
...                   b = ivy.array([3,4]))
>>> y = 1.5
>>> z = x.fourier_encode(y)
>>> print(z)
{
    a: (<class ivy.data_classes.array.array.Array> shape=[2, 9]),
    b: (<class ivy.data_classes.array.array.Array> shape=[2, 9])
}
>>> x = ivy.Container(a = ivy.array([3,10]),
...                   b = ivy.array([4,8]))
>>> y = 2.5
>>> z = x.fourier_encode(y,num_bands=3)
>>> print(z)
{
    a: (<class ivy.data_classes.array.array.Array> shape=[2, 7]),
    b: (<class ivy.data_classes.array.array.Array> shape=[2, 7])
}
gather(indices, /, *, axis=-1, batch_dims=0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.gather. This method simply wraps the function, and so the docstring for ivy.gather also applies to this method with minimal changes.

Parameters:
  • self (Container) – The container from which to gather values.

  • indices (Union[Container, Array, NativeArray]) – The container or array which indicates the indices that will be gathered along the specified axis.

  • axis (Union[int, Container], default: -1) – The axis from which the indices will be gathered. Default is -1.

  • batch_dims (Union[int, Container], default: 0) – optional int, lets you gather different items from each element of a batch.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – Optional array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – New container with the values gathered at the specified indices along the specified axis.

Examples

>>> x = ivy.Container(a = ivy.array([0., 1., 2.]),
...                   b = ivy.array([4., 5., 6.]))
>>> y = ivy.Container(a = ivy.array([0, 1]),
...                   b = ivy.array([1, 2]))
>>> z = x.gather(y)
>>> print(z)
{
    a: ivy.array([0., 1.]),
    b: ivy.array([5., 6.])
}
gather_nd(indices, /, *, batch_dims=0, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.gather_nd. This method simply wraps the function, and so the docstring for ivy.gather_nd also applies to this method with minimal changes.

Parameters:
  • self (Container) – The container from which to gather values.

  • indices (Union[Container, Array, NativeArray]) – Index array or container.

  • batch_dims (Union[int, Container], default: 0) – optional int, lets you gather different items from each element of a batch.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – New container of given shape, with the values gathered at the indices.

Examples

>>> x = ivy.Container(a=ivy.array([[[0., 10.], [20.,30.]],
...                                [[40.,50.], [60.,70.]]]),
...                   b=ivy.array([[[0., 100.], [200.,300.]],
...                                [[400.,500.],[600.,700.]]]))
>>> y = ivy.Container(a=ivy.array([1,0]),
...                   b=ivy.array([0]))
>>> z = x.gather_nd(y)
>>> print(z)
{
    a: ivy.array([40., 50.]),
    b: ivy.array([[0., 100.],
                [200., 300.]])
}
get_num_dims(*, as_array=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.get_num_dims. This method simply wraps the function, and so the docstring for ivy.get_num_dims also applies to this method with minimal changes.

Parameters:
  • self (Container) – ivy.Container to infer the number of dimensions for

  • as_array (Union[bool, Container], default: False) – Whether to return the shape as a array, default False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Shape of the array

Examples

>>> a = ivy.Container(b = ivy.asarray([[0.,1.,1.],[1.,0.,0.],[8.,2.,3.]]))
>>> a.get_num_dims()
{
    b: 2
}
>>> a = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]))
>>> a.get_num_dims()
{
    b: 3
}
>>> a = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]),
...                                    c = ivy.asarray([[0.,1.,1.],[8.,2.,3.]]))
>>> a.get_num_dims()
{
    b: 3,
    c: 2
}
>>> a.get_num_dims(as_array=True)
{
    b: ivy.array(3),
    c: ivy.array(2)
}
has_nans(*, include_infs=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

Determine whether arrays in the container contain any nans, as well as infs or -infs if specified.

Parameters:
  • include_infs (Union[bool, Container], default: True) – Whether to include infs and -infs in the check. Default is True.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

Whether the container has any nans, applied across the entire container.

Examples

>>> x = ivy.Container(a=ivy.array([1, 2]), b=ivy.array([float('nan'), 2]))
>>> y = x.has_nans()
>>> print(y)
{
    a: False,
    b: True
}
inplace_decrement(val, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.inplace_decrement. This method simply wraps the function, and so the docstring for ivy.inplace_decrement also applies to this method with minimal changes.

Parameters:
  • self (Container) – Input container to apply an in-place decrement.

  • val (Union[Array, NativeArray, Container]) – The value of decrement.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container with the array following the in-place decrement.

Examples

Using ivy.Container instance method: >>> x = ivy.Container(a=ivy.array([-6.7, 2.4, -8.5]), … b=ivy.array([1.5, -0.3, 0]), … c=ivy.array([-4.7, -5.4, 7.5])) >>> y = x.inplace_decrement(2) >>> print(y) {

a: ivy.array([-8.7, 0.4, -10.5]), b: ivy.array([-0.5, -2.3, -2]), c: ivy.array([-6.7, -7.4, 5.5])

}

inplace_increment(val, /, *, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.inplace_increment. This method wraps the function, and so the docstring for ivy.inplace_increment also applies to this method with minimal changes.

Parameters:
  • self (Container) – Input container to apply an in-place increment.

  • val (Union[Array, NativeArray, Container]) – The value of increment.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container with the array following the in-place increment.

Examples

Using ivy.Container instance method: >>> x = ivy.Container(a=ivy.array([-6.7, 2.4, -8.5]), … b=ivy.array([1.5, -0.3, 0]), … c=ivy.array([-4.7, -5.4, 7.5])) >>> y = x.inplace_increment(2) >>> print(y) {

a: ivy.array([-4.7, 4.4, -6.5]), b: ivy.array([3.5, 1.7, 2.]), c: ivy.array([-2.7, -3.4, 9.5])

}

inplace_update(val, /, *, ensure_in_backend=False, keep_input_dtype=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.inplace_update. This method simply wraps the function, and so the docstring for ivy.inplace_update also applies to this method with minimal changes.

Parameters:
  • self (Container) – input container to be updated inplace

  • val (Union[Container, Array, NativeArray]) – value to update the input container with

  • ensure_in_backend (Union[bool, Container], default: False) – Whether to ensure that the ivy.NativeArray is also inplace updated. In cases where it should be, backends which do not natively support inplace updates will raise an exception.

  • keep_input_dtype (Union[bool, Container], default: False) – Whether or not to preserve x data type after the update, otherwise val data type will be applied. Defaults to False.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – An array with the vector norm downscaled to the max norm if needed.

Examples

With ivy.Container input and default backend set as numpy:

>>> x = ivy.Container(a=ivy.array([5, 6]), b=ivy.array([7, 8]))
>>> y = ivy.Container(a=ivy.array([1]), b=ivy.array([2]))
>>> x.inplace_update(y)
>>> print(x)
{
    a: ivy.array([1]),
    b: ivy.array([2])
}
is_array(*, exclusive=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.is_array. This method simply wraps the function, and so the docstring for ivy.is_array also applies to this method with minimal changes.

Parameters:
  • self (Container) – The input to check

  • exclusive (Union[bool, Container], default: False) – Whether to check if the data type is exclusively an array, rather than a variable or traced array.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean, whether or not x is an array.

Examples

>>> x = ivy.Container(a=ivy.array([1]), b=ivy.native_array([2, 3]))
>>> y = x.is_array()
>>> print(y)
{
    a: True,
    b: True
}
is_ivy_array(*, exclusive=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.is_native_array. This method simply wraps the function, and so the docstring for ivy.ivy.is_native_array also applies to this method with minimal changes.

Parameters:
  • self (Container) – The input to check

  • exclusive (Union[bool, Container], default: False) – Whether to check if the data type is exclusively an array, rather than a variable or traced array.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

  • ret – Boolean, whether or not x is an array.

  • >>> x = ivy.Container(a=ivy.array([1]), b=ivy.native_array([2, 3]))

  • >>> y = x.is_ivy_array()

  • >>> print(y)

  • { – a: True, b: False

  • }

is_native_array(*, exclusive=False, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.is_native_array. This method simply wraps the function, and so the docstring for ivy.ivy.is_native_array also applies to this method with minimal changes.

Parameters:
  • self (Container) – The input to check

  • exclusive (Union[bool, Container], default: False) – Whether to check if the data type is exclusively an array, rather than a variable or traced array.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean, whether or not x is a native array.

Examples

>>> x = ivy.Container(a=ivy.array([1]), b=ivy.native_array([2, 3]))
>>> y = x.is_native_array()
>>> print(y)
{
    a: False,
    b: True
}
isin(test_elements, /, *, assume_unique=False, invert=False)[source]#

Container instance method variant of ivy.isin. This method simply wraps the function, and so the docstring for ivy.isin also applies to this method with minimal changes.

Parameters:
  • self (Container) – input array

  • test_elements (Container) – values against which to test for each input element

  • assume_unique (Union[bool, Container], default: False) – If True, assumes both elements and test_elements contain unique elements, which can speed up the calculation. Default value is False.

  • invert (Union[bool, Container], default: False) – If True, inverts the boolean return array, resulting in True values for elements not in test_elements. Default value is False.

Return type:

Container

Returns:

ret – output a boolean array of the same shape as elements that is True for elements in test_elements and False otherwise.

Examples

>>> x = ivy.Container(a=[[10, 7, 4], [3, 2, 1]],                                b=[3, 2, 1, 0])
>>> y = ivy.Container(a=[1, 2, 3],                                b=[1, 0, 3])
>>> x.isin(y)
ivy.Container(a=[[False, False, False], [ True,  True,  True]],                        b=[ True, False,  True])
itemsize()[source]#

Container instance method variant of ivy.itemsize. This method simply wraps the function, and so the docstring for ivy.itemsize also applies to this method with minimal changes.

Parameters:

self (Container) – The input container.

Return type:

Container

Returns:

ret – Integers specifying the element size in bytes.

scatter_flat(updates, /, *, size=None, reduction='sum', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.scatter_flat. This method simply wraps the function, and so the docstring for ivy.scatter_flat also applies to this method with minimal changes.

Parameters:
  • self (Container) – Index array or container.

  • updates (Union[Array, NativeArray, Container]) – values to update input tensor with

  • size (Optional[Union[int, Container]], default: None) – The size of the result. Default is None, in which case tensor argument out must be provided.

  • reduction (Union[str, Container], default: 'sum') – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – New container of given shape, with the values updated at the indices.

Examples

With ivy.Container input: >>> indices = ivy.Container(a=ivy.array([1, 0, 1, 0, 2, 2, 3, 3]), … b=ivy.array([0, 0, 1, 0, 2, 2, 3, 3])) >>> updates = ivy.Container(a=ivy.array([9, 2, 0, 2, 3, 2, 1, 8]), … b=ivy.array([5, 1, 7, 2, 3, 2, 1, 3])) >>> size = 8 >>> print(ivy.scatter_flat(indices, updates, size=size)) {

a: ivy.array([2, 0, 2, 8, 0, 0, 0, 0]), b: ivy.array([2, 7, 2, 3, 0, 0, 0, 0])

}

scatter_nd(updates, /, shape=None, *, reduction='sum', key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False, out=None)[source]#

ivy.Container instance method variant of ivy.scatter_nd. This method simply wraps the function, and so the docstring for ivy.scatter_nd also applies to this method with minimal changes.

Parameters:
  • self (Container) – Index array or container.

  • updates (Union[Array, NativeArray, Container]) – values to update input tensor with

  • shape (Optional[Union[Array, NativeArray, Container]], default: None) – The shape of the result. Default is None, in which case tensor argument must be provided.

  • reduction (Union[str, Container], default: 'sum') – The reduction method for the scatter, one of ‘sum’, ‘min’, ‘max’ or ‘replace’

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

  • out (Optional[Container], default: None) – optional output container, for writing the result to. It must have a shape that the inputs broadcast to.

Return type:

Container

Returns:

ret – New container of given shape, with the values updated at the indices.

Examples

scatter into an empty container

>>> indices = ivy.Container(a=ivy.array([[4],[3],[6]]),
...                         b=ivy.array([[5],[1],[2]]))
>>> updates = ivy.Container(a=ivy.array([100, 200, 200]),
...                         b=ivy.array([20, 30, 40]))
>>> shape = ivy.Container(a=ivy.array([10]),
...                       b=ivy.array([10]))
>>> z = indices.scatter_nd(updates, shape=shape)
>>> print(z)
{
    a: ivy.array([0, 0, 0, 200, 100, 0, 200, 0, 0, 0]),
    b: ivy.array([0, 30, 40, 0, 0, 20, 0, 0, 0, 0])
}

With scatter into a container.

>>> indices = ivy.Container(a=ivy.array([[5],[6],[7]]),
...                         b=ivy.array([[2],[3],[4]]))
>>> updates = ivy.Container(a=ivy.array([50, 60, 70]),
...                         b=ivy.array([20, 30, 40]))
>>> z = ivy.Container(a=ivy.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]),
...                   b=ivy.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))
>>> indices.scatter_nd(updates,reduction='replace', out = z)
>>> print(z)
{
    a: ivy.array([1, 2, 3, 4, 5, 50, 60, 70, 9, 10]),
    b: ivy.array([1, 2, 20, 30, 40, 6, 7, 8, 9, 10])
}
size(*, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.size. This method simply wraps the function, and so the docstring for ivy.size also applies to this method with minimal changes.

Parameters:
  • self (Container) – ivy.Container to infer the number of elements for

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Number of elements of the array

Examples

>>> a = ivy.Container(b = ivy.asarray([[0.,1.,1.],[1.,0.,0.],[8.,2.,3.]]))
>>> a.size()
{
    b: 9
}
>>> a = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]))
>>> a.size()
{
    b: 27
}
>>> a = ivy.Container(b = ivy.array([[[0,0,0],[0,0,0],[0,0,0]],
...                                    [[0,0,0],[0,0,0],[0,0,0]]]),
...                                    c = ivy.asarray([[0.,1.,1.],[8.,2.,3.]]))
>>> a.size()
{
    b: 18,
    c: 6,
}
stable_divide(denominator, /, *, min_denominator=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.stable_divide. This method simply wraps the function, and so the docstring for ivy.stable_divide also applies to this method with minimal changes.

Parameters:
  • self – input container.

  • denominator (Union[Number, Array, NativeArray, Container]) – Container of the denominators of the division.

  • min_denominator (Optional[Union[Number, Array, NativeArray, Container]], default: None) – Container of the minimum denominator to use, use global ivy.min_denominator by default.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – a container of numpy arrays copying all the element of the container self. A container of elements containing the new items following the numerically stable division, using self as the numerator.

Examples

>>> x = ivy.Container(a=ivy.asarray([3., 6.]), b=ivy.asarray([9., 12.]))
>>> y = x.stable_divide(5)
>>> print(y)
{
    a: ivy.array([0.6, 1.2]),
    b: ivy.array([1.8, 2.4])
}
>>> x = ivy.Container(a=ivy.asarray([[2., 4.], [6., 8.]]),
...                   b=ivy.asarray([[10., 12.], [14., 16.]]))
>>> z = x.stable_divide(2, min_denominator=2)
>>> print(z)
{
    a: ivy.array([[0.5, 1.],
          [1.5, 2.]]),
    b: ivy.array([[2.5, 3.],
          [3.5, 4.]])
}
>>> x = ivy.Container(a=ivy.asarray([3., 6.]), b=ivy.asarray([9., 12.]))
>>> y = ivy.Container(a=ivy.asarray([6., 9.]), b=ivy.asarray([12., 15.]))
>>> z = x.stable_divide(y)
>>> print(z)
{
    a: ivy.array([0.5, 0.667]),
    b: ivy.array([0.75, 0.8])
}
stable_pow(exponent, /, *, min_base=None, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.stable_pow. This method simply wraps the function, and so the docstring for ivy.stable_pow also applies to this method with minimal changes.

Parameters:
  • self – Container of the base.

  • exponent (Union[Number, Array, NativeArray, Container]) – Container of the exponent.

  • min_base (Optional[Union[float, Container]], default: None) – The minimum base to use, use global ivy.min_base by default.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container of elements containing the new items following the numerically stable power.

Examples

>>> x = ivy.Container(a=ivy.asarray([2, 4]), b=ivy.asarray([6, 8]))
>>> y = x.stable_pow(2)
>>> print(y)
{
    a: ivy.array([4.00004, 16.00008]),
    b: ivy.array([36.00012, 64.00016])
}
>>> x = ivy.Container(a=4, b=8)
>>> y = x.stable_pow(2)
>>> print(y)
{
    a: ivy.array(16.00008),
    b: ivy.array(64.00016)
}
>>> x = ivy.Container(a=4, b=8)
>>> y = ivy.asarray([1, 2])
>>> z = x.stable_pow(y)
>>> print(z)
{
    a: ivy.array([4.00001, 16.00008]),
    b: ivy.array([8.00001, 64.00016])
}
>>> x = ivy.Container(a=ivy.asarray([2, 4]), b=ivy.asarray([6, 8]))
>>> y = ivy.Container(a=4, b=8)
>>> z = x.stable_pow(y)
>>> print(z)
{
    a: ivy.array([16.00032, 256.00256]),
    b: ivy.array([1679638.395, 16777383.77])
}
static static_isin(element, test_elements, /, *, assume_unique=False, invert=False)[source]#

Container instance method variant of ivy.isin. This method simply wraps the function, and so the docstring for ivy.isin also applies to this method with minimal changes.

Parameters:
  • element (Container) – input container

  • test_elements (Container) – values against which to test for each input element

  • assume_unique (Union[bool, Container], default: False) – If True, assumes both elements and test_elements contain unique elements, which can speed up the calculation. Default value is False.

  • invert (Union[bool, Container], default: False) – If True, inverts the boolean return array, resulting in True values for elements not in test_elements. Default value is False.

Return type:

Container

Returns:

ret – output a boolean container of the same shape as elements that is True for elements in test_elements and False otherwise.

Examples

>>> x = ivy.Container(a=[[10, 7, 4], [3, 2, 1]],                              b=[3, 2, 1, 0])
>>> y = ivy.Container(a=[1, 2, 3],                              b=[1, 0, 3])
>>> ivy.Container.static_isin(x, y)
ivy.Container(a=[[False, False, False], [ True,  True,  True]],                      b=[ True, False,  True])
>>> ivy.Container.static_isin(x, y, invert=True)
ivy.Container(a=[[ True,  True,  True], [False, False, False]],                      b=[False,  True, False])
static static_itemsize(x, /)[source]#

Container instance method variant of ivy.itemsize. This method simply wraps the function, and so the docstring for ivy.itemsize also applies to this method with minimal changes.

Parameters:

x (Container) – The input container.

Return type:

Container

Returns:

ret – Integers specifying the element size in bytes.

Examples

>>> x = ivy.Container(a=ivy.array([1,2,3], dtype=ivy.float64),                                b=ivy.array([1,2,3], dtype=ivy.complex128))
>>> ivy.itemsize(x)
ivy.Container(a=8, b=16)
static static_strides(x, /)[source]#

Container instance method variant of ivy.strides. This method simply wraps the function, and so the docstring for ivy.strides also applies to this method with minimal changes.

Parameters:

x (Container) – The input container.

Return type:

Container

Returns:

ret – A tuple containing the strides.

Examples

>>> x = ivy.Container(a=ivy.array([[1, 5, 9], [2, 6, 10]]),                                b=ivy.array([[1, 2, 3, 4], [5, 6, 7, 8]]))
>>> ivy.strides(x)
ivy.Container(a=(4, 12), b=(16, 4))
strides()[source]#

Container instance method variant of ivy.strides. This method simply wraps the function, and so the docstring for ivy.strides also applies to this method with minimal changes.

Parameters:

self (Container) – The input container.

Return type:

Container

Returns:

ret – A tuple containing the strides.

supports_inplace_updates(*, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.supports_inplace_updates. This method simply wraps the static function, and so the docstring for the static variant also applies to this method with minimal changes.

Parameters:
  • self (Container) – An ivy.Container whose elements are data types supported by Ivy.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – An ivy.Container instance of bool values. True if nodes of the Container support in-place operations. False otherwise.

Examples

With ivy.Container input and backend set as torch:

>>> x = ivy.Container(a=ivy.array([5., 6.]), b=ivy.array([7., 8.]))
>>> ret = x.supports_inplace_updates()
>>> print(ret)
{
    a: True,
    b: True
}

With ivy.Container input and backend set as jax:

>>> x = ivy.Container(a=ivy.array([5.]), b=ivy.array([7.]))
>>> ret = x.supports_inplace_updates()
>>> print(ret)
{
    a: False,
    b: False
}
to_list(*, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.to_list. This method simply wraps the function, and so the docstring for ivy.to_list also applies to this method with minimal changes.

Parameters:
  • self (Container) – input container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – A container with list representation of the leave arrays.

Examples

With one ivy.Container instances:

>>> x = ivy.Container(a=ivy.array([0, 1, 2]))
>>> y = x.to_list()
>>> print(y)
{a:[0,1,2]}
to_numpy(*, copy=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.to_numpy. This method simply wraps the function, and so the docstring for ivy.to_numpy also applies to this method with minimal changes.

Parameters:
  • self (Container) – input container.

  • copy (Union[bool, Container], default: True) – Whether to copy the input. Default is True.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – a container of numpy arrays copying all the element of the container self.

Examples

With one ivy.Container instances:

>>> x = ivy.Container(a=ivy.array([-1, 0, 1]), b=ivy.array([1, 0, 1, 1]))
>>> y = x.to_numpy()
>>> print(y)
{
    a: array([-1, 0, 1], dtype=int32),
    b: array([1, 0, 1, 1], dtype=int32)
}
>>> x = ivy.Container(a=ivy.native_array([[-1, 0, 1], [-1, 0, 1], [1, 0, -1]]),
...                   b=ivy.native_array([[-1, 0, 0], [1, 0, 1], [1, 1, 1]]))
>>> y = x.to_numpy()
>>> print(y)
{
    a: array([[-1, 0, 1],
            [-1, 0, 1],
            [1, 0, -1]], dtype=int32),
    b: array([[-1, 0, 0],
            [1, 0, 1],
            [1, 1, 1]], dtype=int32)
}
to_scalar(*, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.to_scalar. This method simply wraps the function, and so the docstring for ivy.to_scalar also applies to this method with minimal changes.

Parameters:
  • self (Container) – input container.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – a container of scalar values copying all the element of the container self.

Examples

With one ivy.Container instance:

>>> x = ivy.Container(a=ivy.array([1]), b=ivy.array([0]),
...                   c=ivy.array([-1]))
>>> y = x.to_scalar()
>>> print(y)
{
    a: 1,
    b: 0,
    c: -1
}
value_is_nan(*, include_infs=True, key_chains=None, to_apply=True, prune_unapplied=False, map_sequences=False)[source]#

ivy.Container instance method variant of ivy.value_is_nan. This method simply wraps the function, and so the docstring for ivy.value_is_nan also applies to this method with minimal changes.

Parameters:
  • self (Container) – input container.

  • include_infs (Union[bool, Container], default: True) – Whether to include infs and -infs in the check. Default is True.

  • key_chains (Optional[Union[List[str], Dict[str, str], Container]], default: None) – The key-chains to apply or not apply the method to. Default is None.

  • to_apply (Union[bool, Container], default: True) – If True, the method will be applied to key_chains, otherwise key_chains will be skipped. Default is True.

  • prune_unapplied (Union[bool, Container], default: False) – Whether to prune key_chains for which the function was not applied. Default is False.

  • map_sequences (Union[bool, Container], default: False) – Whether to also map method to sequences (lists, tuples). Default is False.

Return type:

Container

Returns:

ret – Boolean as to whether the input value is a nan or not.

Examples

>>> x = ivy.Container(a=ivy.array([425]), b=ivy.array([float('nan')]))
>>> y = x.value_is_nan()
>>> print(y)
{
    a: False,
    b: True
}
>>> x = ivy.Container(a=ivy.array([float('inf')]), b=ivy.array([0]))
>>> y = x.value_is_nan()
>>> print(y)
{
    a: True,
    b: False
}
>>> x = ivy.Container(a=ivy.array([float('inf')]), b=ivy.array([22]))
>>> y = x.value_is_nan(include_infs=False)
>>> print(y)
{
    a: False,
    b: False
}

This should have hopefully given you an overview of the general submodule, if you have any questions, please feel free to reach out on our discord!