Elementwise#
- class ivy.data_classes.array.elementwise._ArrayWithElementwise[source]#
Bases:
ABC
- _abc_impl = <_abc._abc_data object>#
- abs(*, out=None)[source]#
ivy.Array instance method variant of ivy.abs. This method simply wraps the function, and so the docstring for ivy.abs also applies to this method with minimal changes.
- Parameters:
self (
Union
[float
,Array
,NativeArray
]) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the absolute value of each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([2.6, -6.6, 1.6, -0]) >>> y = x.abs() >>> print(y) ivy.array([ 2.6, 6.6, 1.6, 0.])
- acos(*, out=None)[source]#
ivy.Array instance method variant of ivy.acos. This method simply wraps the function, and so the docstring for ivy.acos also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse cosine of each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([1.0, 0.0, -0.9]) >>> y = x.acos() >>> print(y) ivy.array([0. , 1.57, 2.69])
- acosh(*, out=None)[source]#
ivy.Array instance method variant of ivy.acosh. This method simply wraps the function, and so the docstring for ivy.acosh also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements each represent the area of a hyperbolic sector. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse hyperbolic cosine of each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([2., 10.0, 1.0]) >>> y = x.acosh() >>> print(y) ivy.array([1.32, 2.99, 0. ])
- add(x2, /, *, alpha=None, out=None)[source]#
ivy.Array instance method variant of ivy.add. This method simply wraps the function, and so the docstring for ivy.add also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a numeric data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a numeric data type.alpha (
Optional
[Union
[int
,float
]], default:None
) – optional scalar multiplier forx2
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise sums. The returned array must have a data type determined by type-promotion.
Examples
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.add(y) >>> print(z) ivy.array([5, 7, 9])
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.add(y, alpha=2) >>> print(z) ivy.array([9, 12, 15])
- angle(*, deg=False, out=None)[source]#
ivy.Array instance method variant of ivy.angle. This method simply wraps the function, and so the docstring for ivy.angle also applies to this method with minimal changes.
- Parameters:
z – Array-like input.
deg (
bool
, default:False
) – optional bool.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Returns an array of angles for each complex number in the input. If def is False(default), angle is calculated in radian and if def is True, then angle is calculated in degrees.
Examples
>>> ivy.set_backend('tensorflow') >>> z = ivy.array([-1 + 1j, -2 + 2j, 3 - 3j]) >>> z ivy.array([-1.+1.j, -2.+2.j, 3.-3.j]) >>> ivy.angle(z) ivy.array([ 2.35619449, 2.35619449, -0.78539816]) >>> ivy.set_backend('numpy') >>> ivy.angle(z,deg=True) ivy.array([135., 135., -45.])
- asin(*, out=None)[source]#
ivy.Array instance method variant of ivy.asin. This method simply wraps the function, and so the docstring for ivy.asin also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse sine of each element in
self
. The returned array must have the same data type asself
.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([-1., 1., 4., 0.8]) >>> y = x.asin() >>> print(y) ivy.array([-1.57, 1.57, nan, 0.927])
>>> x = ivy.array([-3., -0.9, 1.5, 2.8]) >>> y = ivy.zeros(4) >>> x.asin(out=y) >>> print(y) ivy.array([nan, -1.12, nan, nan])
- asinh(*, out=None)[source]#
ivy.Array instance method variant of ivy.asinh. This method simply wraps the function, and so the docstring for ivy.asinh also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements each represent the area of a hyperbolic sector. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse hyperbolic sine of each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([-1., 0., 3.]) >>> y = x.asinh() >>> print(y) ivy.array([-0.881, 0. , 1.82 ])
- atan(*, out=None)[source]#
ivy.Array instance method variant of ivy.atan. This method simply wraps the function, and so the docstring for ivy.atan also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse tangent of each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([1.0, 0.5, -0.5]) >>> y = x.atan() >>> print(y) ivy.array([ 0.785, 0.464, -0.464])
- atan2(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.atan2. This method simply wraps the function, and so the docstring for ivy.atan2 also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array corresponding to the y-coordinates. Should have a real-valued floating-point data type.x2 (
Union
[Array
,NativeArray
]) – second input array corresponding to the x-coordinates. Must be compatible with ``self``(see broadcasting). Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse tangent of the quotient
self/x2
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([1.0, 0.5, 0.0, -0.5, 0.0]) >>> y = ivy.array([1.0, 2.0, -1.5, 0, 1.0]) >>> z = x.atan2(y) >>> print(z) ivy.array([ 0.785, 0.245, 3.14 , -1.57 , 0. ])
>>> x = ivy.array([1.0, 2.0]) >>> y = ivy.array([-2.0, 3.0]) >>> z = ivy.zeros(2) >>> x.atan2(y, out=z) >>> print(z) ivy.array([2.68 , 0.588])
>>> nan = float("nan") >>> x = ivy.array([nan, 1.0, 1.0, -1.0, -1.0]) >>> y = ivy.array([1.0, +0, -0, +0, -0]) >>> x.atan2(y) ivy.array([ nan, 1.57, 1.57, -1.57, -1.57])
>>> x = ivy.array([+0, +0, +0, +0, -0, -0, -0, -0]) >>> y = ivy.array([1.0, +0, -0, -1.0, 1.0, +0, -0, -1.0]) >>> x.atan2(y) ivy.array([0. , 0. , 0. , 3.14, 0. , 0. , 0. , 3.14]) >>> y.atan2(x) ivy.array([ 1.57, 0. , 0. , -1.57, 1.57, 0. , 0. , -1.57])
>>> inf = float("infinity") >>> x = ivy.array([inf, -inf, inf, inf, -inf, -inf]) >>> y = ivy.array([1.0, 1.0, inf, -inf, inf, -inf]) >>> z = x.atan2(y) >>> print(z) ivy.array([ 1.57 , -1.57 , 0.785, 2.36 , -0.785, -2.36 ])
>>> x = ivy.array([2.5, -1.75, 3.2, 0, -1.0]) >>> y = ivy.array([-3.5, 2, 0, 0, 5]) >>> z = x.atan2(y) >>> print(z) ivy.array([ 2.52 , -0.719, 1.57 , 0. , -0.197])
>>> x = ivy.array([[1.1, 2.2, 3.3], [-4.4, -5.5, -6.6]]) >>> y = x.atan2(x) >>> print(y) ivy.array([[ 0.785, 0.785, 0.785], [-2.36 , -2.36 , -2.36 ]])
- atanh(*, out=None)[source]#
ivy.Array instance method variant of ivy.atanh. This method simply wraps the function, and so the docstring for ivy.atanh also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements each represent the area of a hyperbolic sector. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the inverse hyperbolic tangent of each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([0.0, 0.5, -0.9]) >>> y = x.atanh() >>> print(y) ivy.array([ 0. , 0.549, -1.47 ])
- bitwise_and(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.bitwise_and. This method simply wraps the function, and so the docstring for ivy.bitwise_and also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have an integer or boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have an integer or boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
>>> x = ivy.array([True, False]) >>> y = ivy.array([True, True]) >>> x.bitwise_and(y, out=y) >>> print(y) ivy.array([ True, False])
>>> x = ivy.array([[7],[8],[9]]) >>> y = ivy.native_array([[10],[11],[12]]) >>> z = x.bitwise_and(y) >>> print(z) ivy.array([[2],[8],[8]])
- bitwise_invert(*, out=None)[source]#
ivy.Array instance method variant of ivy.bitwise_invert. This method simply wraps the function, and so the docstring for ivy.bitiwse_invert also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have an integer or boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have the same data type as
self
.
Examples
>>> x = ivy.array([1, 6, 9]) >>> y = x.bitwise_invert() >>> print(y) ivy.array([-2, -7, -10])
>>> x = ivy.array([False, True]) >>> y = x.bitwise_invert() >>> print(y) ivy.array([True, False])
- bitwise_left_shift(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.bitwise_left_shift. This method simply wraps the function, and so the docstring for ivy.bitwise_left_shift also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have an integer or boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have an integer or boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
- bitwise_or(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.bitwise_or. This method simply wraps the function, and so the docstring for ivy.bitwise_or also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have an integer or boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have the same data type as
self
.
Examples
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.bitwise_or(y) >>> print(z) ivy.array([5, 7, 7])
- bitwise_right_shift(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.bitwise_right_shift. This method simply wraps the function, and so the docstring for ivy.bitwise_right_shift also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have an integer or boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have an integer or boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
>>> a = ivy.array([[2, 3, 4], [5, 10, 64]]) >>> b = ivy.array([0, 1, 2]) >>> y = a.bitwise_right_shift(b) >>> print(y) ivy.array([[ 2, 1, 1], [ 5, 5, 16]])
- bitwise_xor(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.bitwise_xor. This method simply wraps the function, and so the docstring for ivy.bitwise_xor also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have an integer or boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have an integer or boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
>>> a = ivy.array([[89, 51, 32], [14, 18, 19]]) >>> b = ivy.array([[[19, 26, 27], [22, 23, 20]]]) >>> y = a.bitwise_xor(b) >>> print(y) ivy.array([[[74,41,59],[24,5,7]]])
- ceil(*, out=None)[source]#
ivy.Array instance method variant of ivy.ceil. This method simply wraps the function, and so the docstring for ivy.ceil also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the rounded result for each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([5.5, -2.5, 1.5, -0]) >>> y = x.ceil() >>> print(y) ivy.array([ 6., -2., 2., 0.])
- cos(*, out=None)[source]#
ivy.Array instance method variant of ivy.cos. This method simply wraps the function, and so the docstring for ivy.cos also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements are each expressed in radians. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the cosine of each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
With
ivy.Array
input:>>> x = ivy.array([1., 0., 2.,]) >>> y = x.cos() >>> print(y) ivy.array([0.54, 1., -0.416])
>>> x = ivy.array([-3., 0., 3.]) >>> y = ivy.zeros(3) >>> x.cos(out=y) >>> print(y) ivy.array([-0.99, 1. , -0.99])
>>> x = ivy.array([[0., 1.,], [2., 3.]]) >>> y = x.cos() >>> print(y) ivy.array([[1., 0.540], [-0.416, -0.990]])
- cosh(*, out=None)[source]#
ivy.Array instance method variant of ivy.cosh. This method simply wraps the function, and so the docstring for ivy.cosh also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements each represent a hyperbolic angle. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the hyperbolic cosine of each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([1., 2., 3.]) >>> print(x.cosh()) ivy.array([1.54, 3.76, 10.1])
>>> x = ivy.array([0.23, 3., -1.2]) >>> y = ivy.zeros(3) >>> print(x.cosh(out=y)) ivy.array([1.03, 10.1, 1.81])
- deg2rad(*, out=None)[source]#
ivy.Array instance method variant of ivy.deg2rad. This method simply wraps the function, and so the docstring for ivy.deg2rad also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. to be converted from degrees to radians.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise conversion from degrees to radians.
Examples
With
ivy.Array
input:>>> x=ivy.array([90,180,270,360]) >>> y=x.deg2rad() >>> print(y) ivy.array([1.57, 3.14, 4.71, 6.28])
- divide(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.divide. This method simply wraps the function, and so the docstring for ivy.divide also applies to this method with minimal changes.
- Parameters:
self (
Array
) – dividend input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – divisor input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([2., 2., 2.]) >>> y = x1.divide(x2) >>> print(y) ivy.array([1., 3.5, 4.5])
With mixed
ivy.Array
and ivy.NativeArray inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.native_array([2., 2., 2.]) >>> y = x1.divide(x2) >>> print(y) ivy.array([1., 3.5, 4.5])
- equal(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.equal. This method simply wraps the function, and so the docstring for ivy.equal also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. May have any data type.x2 (
Union
[float
,Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). May have any data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([1., 7., 9.]) >>> y = x1.equal(x2) >>> print(y) ivy.array([False, True, True])
With mixed
ivy.Array
andivy.NativeArray
inputs:>>> x1 = ivy.array([2.5, 7.3, 9.375]) >>> x2 = ivy.native_array([2.5, 2.9, 9.375]) >>> y = x1.equal(x2) >>> print(y) ivy.array([True, False, True])
With mixed
ivy.Array
and float inputs:>>> x1 = ivy.array([2.5, 7.3, 9.375]) >>> x2 = 7.3 >>> y = x1.equal(x2) >>> print(y) ivy.array([False, True, False])
With mixed
ivy.Container
andivy.Array
inputs:>>> x1 = ivy.array([3., 1., 0.9]) >>> x2 = ivy.Container(a=ivy.array([12., 3.5, 6.3]), b=ivy.array([3., 1., 0.9])) >>> y = x1.equal(x2) >>> print(y) { a: ivy.array([False, False, False]), b: ivy.array([True, True, True]) }
- erf(*, out=None)[source]#
ivy.Array instance method variant of ivy.erf. This method simply wraps the function, and so the docstring for ivy.erf also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array to compute exponential for.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the Gauss error of
self
.
Examples
>>> x = ivy.array([0, 0.3, 0.7, 1.0]) >>> x.erf() ivy.array([0., 0.328, 0.677, 0.842])
- exp(*, out=None)[source]#
ivy.Array instance method variant of ivy.exp. This method simply wraps the function, and so the docstring for ivy.exp also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated exponential function result for each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([1., 2., 3.]) >>> print(x.exp()) ivy.array([ 2.71828198, 7.38905573, 20.08553696])
- exp2(*, out=None)[source]#
ivy.Array instance method variant of ivy.exp2. This method simply wraps the function, and so the docstring for ivy.exp2 also applies to this method with minimal changes.
- Parameters:
self (
Union
[Array
,float
,list
,tuple
]) – Array-like input.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Element-wise 2 to the power x. This is a scalar if x is a scalar.
Examples
>>> x = ivy.array([1, 2, 3]) >>> x.exp2() ivy.array([2., 4., 8.]) >>> x = [5, 6, 7] >>> x.exp2() ivy.array([32., 64., 128.])
- expm1(*, out=None)[source]#
ivy.Array instance method variant of ivy.expm1. This method simply wraps the function, and so the docstring for ivy.expm1 also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
x
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([5.5, -2.5, 1.5, -0]) >>> y = x.expm1() >>> print(y) ivy.array([244. , -0.918, 3.48 , 0. ])
>>> y = ivy.array([0., 0.]) >>> x = ivy.array([5., 0.]) >>> _ = x.expm1(out=y) >>> print(y) ivy.array([147., 0.])
- floor(*, out=None)[source]#
ivy.Array instance method variant of ivy.floor. This method simply wraps the function, and so the docstring for ivy.floor also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the rounded result for each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([5.5, -2.5, 1.5, -0]) >>> y = x.floor() >>> print(y) ivy.array([ 5., -3., 1., 0.])
- floor_divide(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.floor_divide. This method simply wraps the function, and so the docstring for ivy.floor_divide also applies to this method with minimal changes.
- Parameters:
self (
Array
) – dividend input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – divisor input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([13., 7., 8.]) >>> x2 = ivy.array([3., 2., 7.]) >>> y = x1.floor_divide(x2) >>> print(y) ivy.array([4., 3., 1.])
With mixed
ivy.Array
andivy.NativeArray
inputs:>>> x1 = ivy.array([13., 7., 8.]) >>> x2 = ivy.native_array([3., 2., 7.]) >>> y = x1.floor_divide(x2) >>> print(y) ivy.array([4., 3., 1.])
- fmin(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.fmin. This method simply wraps the function, and so the docstring for ivy.fmin also applies to this method with minimal changes.
- Parameters:
self (
Array
) – First input array.x2 (
Array
) – Second input arrayout (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Array with element-wise minimums.
Examples
>>> x1 = ivy.array([2, 3, 4]) >>> x2 = ivy.array([1, 5, 2]) >>> ivy.fmin(x1, x2) ivy.array([1, 3, 2])
>>> x1 = ivy.array([ivy.nan, 0, ivy.nan]) >>> x2 = ivy.array([0, ivy.nan, ivy.nan]) >>> x1.fmin(x2) ivy.array([ 0., 0., nan])
- gcd(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.gcd. This method simply wraps the function, and so the docstring for ivy.gcd also applies to this method with minimal changes.
- Parameters:
self (
Union
[Array
,int
,list
,tuple
]) – First array-like input.x2 (
Union
[Array
,int
,list
,tuple
]) – Second array-like inputout (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
Examples
>>> x1 = ivy.array([1, 2, 3]) >>> x2 = ivy.array([4, 5, 6]) >>> x1.gcd(x2) ivy.array([1., 1., 3.]) >>> x1 = ivy.array([1, 2, 3]) >>> x1.gcd(10) ivy.array([1., 2., 1.])
- greater(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.greater. This method simply wraps the function, and so the docstring for ivy.greater also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
>>> x1 = ivy.array([2., 5., 15.]) >>> x2 = ivy.array([3., 2., 4.]) >>> y = x1.greater(x2) >>> print(y) ivy.array([False, True, True])
- greater_equal(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.greater_equal. This method simply wraps the function, and so the docstring for ivy.greater_equal also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
>>> x = ivy.array([1, 2, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.greater_equal(y) >>> print(z) ivy.array([False,False,False])
- isfinite(*, out=None)[source]#
ivy.Array instance method variant of ivy.isfinite. This method simply wraps the function, and so the docstring for ivy.isfinite also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing test results. An element
out_i
isTrue
ifself_i
is finite andFalse
otherwise. The returned array must have a data type ofbool
.
Examples
>>> x = ivy.array([0, ivy.nan, -ivy.inf, float('inf')]) >>> y = x.isfinite() >>> print(y) ivy.array([ True, False, False, False])
- isinf(*, detect_positive=True, detect_negative=True, out=None)[source]#
ivy.Array instance method variant of ivy.isinf. This method simply wraps the function, and so the docstring for ivy.isinf also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued data type.detect_positive (
bool
, default:True
) – ifTrue
, positive infinity is detected.detect_negative (
bool
, default:True
) – ifTrue
, negative infinity is detected.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing test results. An element
out_i
isTrue
ifself_i
is either positive or negative infinity andFalse
otherwise. The returned array must have a data type ofbool
.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([1, 2, 3]) >>> x.isinf() ivy.array([False, False, False])
>>> x = ivy.array([[1.1, 2.3, -3.6]]) >>> x.isinf() ivy.array([[False, False, False]])
>>> x = ivy.array([[[1.1], [float('inf')], [-6.3]]]) >>> x.isinf() ivy.array([[[False],[True],[False]]])
>>> x = ivy.array([[-float('inf'), float('inf'), 0.0]]) >>> x.isinf() ivy.array([[ True, True, False]])
>>> x = ivy.zeros((3, 3)) >>> x.isinf() ivy.array([[False, False, False], [False, False, False], [False, False, False]])
- isnan(*, out=None)[source]#
ivy.Array instance method variant of ivy.isnan. This method simply wraps the function, and so the docstring for ivy.isnan also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing test results. An element
out_i
isTrue
ifself_i
isNaN
andFalse
otherwise. The returned array should have a data type ofbool
.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([1, 2, 3]) >>> x.isnan() ivy.array([False, False, False])
>>> x = ivy.array([[1.1, 2.3, -3.6]]) >>> x.isnan() ivy.array([[False, False, False]])
>>> x = ivy.array([[[1.1], [float('inf')], [-6.3]]]) >>> x.isnan() ivy.array([[[False], [False], [False]]])
>>> x = ivy.array([[-float('nan'), float('nan'), 0.0]]) >>> x.isnan() ivy.array([[ True, True, False]])
>>> x = ivy.array([[-float('nan'), float('inf'), float('nan'), 0.0]]) >>> x.isnan() ivy.array([[ True, False, True, False]])
>>> x = ivy.zeros((3, 3)) >>> x.isnan() ivy.array([[False, False, False], [False, False, False], [False, False, False]])
- isreal(*, out=None)[source]#
ivy.Array instance method variant of ivy.isreal. This method simply wraps the function, and so the docstring for ivy.isreal also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing test results. An element
out_i
isTrue
ifself_i
is real number andFalse
otherwise. The returned array should have a data type ofbool
.
Examples
>>> x = ivy.array([1j, 2+5j, 3.7-6j]) >>> x.isreal() ivy.array([False, False, False])
- lcm(x2, *, out=None)[source]#
ivy.Array instance method variant of ivy.lcm. This method simply wraps the function, and so the docstring for ivy.lcm also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array.x2 (
Array
) – second input arrayout (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – an array that includes the element-wise least common multiples of ‘self’ and x2
Examples
>>> x1=ivy.array([2, 3, 4]) >>> x2=ivy.array([5, 8, 15]) >>> x1.lcm(x2) ivy.array([10, 21, 60])
- less(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.less. This method simply wraps the function, and so the docstring for ivy.less also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
>>> x1 = ivy.array([2., 5., 15.]) >>> x2 = ivy.array([3., 2., 4.]) >>> y = x1.less(x2) >>> print(y) ivy.array([ True, False, False])
- less_equal(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.less_equal. This method simply wraps the function, and so the docstring for ivy.less_equal also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
With :code:’ivy.Array’ inputs:
>>> x1 = ivy.array([1, 2, 3]) >>> x2 = ivy.array([2, 2, 1]) >>> y = x1.less_equal(x2) >>> print(y) ivy.array([True, True, False])
With mixed :code:’ivy.Array’ and :code:’ivy.NativeArray’ inputs:
>>> x1 = ivy.array([2.5, 3.3, 9.24]) >>> x2 = ivy.native_array([2.5, 1.1, 9.24]) >>> y = x1.less_equal(x2) >>> print(y) ivy.array([True, False, True])
With mixed :code:’ivy.Container’ and :code:’ivy.Array’ inputs:
>>> x1 = ivy.array([3., 1., 0.8]) >>> x2 = ivy.Container(a=ivy.array([2., 1., 0.7]), b=ivy.array([3., 0.6, 1.2])) >>> y = x1.less_equal(x2) >>> print(y) { a: ivy.array([False, True, False]), b: ivy.array([True, False, True]) }
- log(*, out=None)[source]#
ivy.Array instance method variant of ivy.log. This method simply wraps the function, and so the docstring for ivy.log also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([4.0, 1, -0.0, -5.0]) >>> y = x.log() >>> print(y) ivy.array([1.39, 0., -inf, nan])
>>> x = ivy.array([float('nan'), -5.0, -0.0, 1.0, 5.0, float('+inf')]) >>> y = x.log() >>> print(y) ivy.array([nan, nan, -inf, 0., 1.61, inf])
>>> x = ivy.array([[float('nan'), 1, 5.0, float('+inf')], ... [+0, -1.0, -5, float('-inf')]]) >>> y = x.log() >>> print(y) ivy.array([[nan, 0., 1.61, inf], [-inf, nan, nan, nan]])
- log10(*, out=None)[source]#
ivy.Array instance method variant of ivy.log10. This method simply wraps the function, and so the docstring for ivy.log10 also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated base
10
logarithm for each element inself
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([4.0, 1, -0.0, -5.0]) >>> y = x.log10() >>> print(y) ivy.array([0.602, 0., -inf, nan])
>>> x = ivy.array([float('nan'), -5.0, -0.0, 1.0, 5.0, float('+inf')]) >>> y = x.log10() >>> print(y) ivy.array([nan, nan, -inf, 0., 0.699, inf])
>>> x = ivy.array([[float('nan'), 1, 5.0, float('+inf')], ... [+0, -1.0, -5, float('-inf')]]) >>> y = x.log10() >>> print(y) ivy.array([[nan, 0., 0.699, inf], [-inf, nan, nan, nan]])
- log1p(*, out=None)[source]#
ivy.Array instance method variant of ivy.log1p. This method simply wraps the function, and so the docstring for ivy.log1p also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([1., 2., 3.]) >>> y = x.log1p() >>> print(y) ivy.array([0.693, 1.1 , 1.39 ])
>>> x = ivy.array([0.1 , .001 ]) >>> x.log1p(out = x) >>> print(x) ivy.array([0.0953, 0.001 ])
- log2(*, out=None)[source]#
ivy.Array instance method variant of ivy.log2. This method simply wraps the function, and so the docstring for ivy.log2 also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated base
2
logarithm for each element inself
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([5.0, 1, -0.0, -6.0]) >>> y = ivy.log2(x) >>> print(y) ivy.array([2.32, 0., -inf, nan])
>>> x = ivy.array([float('nan'), -5.0, -0.0, 1.0, 5.0, float('+inf')]) >>> y = x.log2() >>> print(y) ivy.array([nan, nan, -inf, 0., 2.32, inf])
>>> x = ivy.array([[float('nan'), 1, 5.0, float('+inf')], [+0, -2.0, -5, float('-inf')]]) >>> y = x.log2() >>> print(y) ivy.array([[nan, 0., 2.32, inf], [-inf, nan, nan, nan]])
- logaddexp(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.logaddexp. This method simply wraps the function, and so the docstring for ivy.logaddexp also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([2., 5., 15.]) >>> y = ivy.array([3., 2., 4.]) >>> z = x.logaddexp(y) >>> print(z) ivy.array([ 3.31, 5.05, 15. ])
- logaddexp2(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.logaddexp2. This method simply wraps the function, and so the docstring for ivy.logaddexp2 also applies to this method with minimal changes.
- Parameters:
self (
Union
[Array
,float
,list
,tuple
]) – First array-like input.x2 (
Union
[Array
,float
,list
,tuple
]) – Second array-like inputout (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Element-wise logaddexp2 of x1 and x2.
Examples
>>> x1 = ivy.array([1, 2, 3]) >>> x2 = ivy.array([4, 5, 6]) >>> x1.logaddexp2(x2) ivy.array([4.169925, 5.169925, 6.169925])
- logical_and(x2, *, out=None)[source]#
ivy.Array instance method variant of ivy.logical_and. This method simply wraps the function, and so the docstring for ivy.logical_and also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
Using ‘ivy.Array’ instance:
>>> x = ivy.array([True, False, True, False]) >>> y = ivy.array([True, True, False, False]) >>> z = x.logical_and(y) >>> print(z) ivy.array([True, False, False, False])
- logical_not(*, out=None)[source]#
ivy.Array instance method variant of ivy.logical_not. This method simply wraps the function, and so the docstring for ivy.logical_not also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a boolean data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
With
ivy.Array
input:>>> x=ivy.array([0,1,1,0]) >>> x.logical_not() ivy.array([ True, False, False, True])
>>> x=ivy.array([2,0,3,9]) >>> x.logical_not() ivy.array([False, True, False, False])
- logical_or(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.logical_or. This method simply wraps the function, and so the docstring for ivy.logical_or also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a boolean data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.This function conforms to the `Array API Standard
<https (//data-apis.org/array-api/latest/>`_. This docstring is an extension of)
the `docstring <https (//data-apis.org/array-api/latest/)
API_specification/generated/array_api.logical_or.html>`_
in the standard.
Both the description and the type hints above assumes an array input for
simplicity, but this function is *nestable, and therefore also*
accepts
ivy.Container
instances in place of any of the arguments.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([False, 3, 0]) >>> y = ivy.array([2, True, False]) >>> z = x.logical_or(y) >>> print(z) ivy.array([ True, True, False])
- logical_xor(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.logical_xor. This method simply wraps the function, and so the docstring for ivy.logical_xor also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a boolean data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
>>> x = ivy.array([True, False, True, False]) >>> y = ivy.array([True, True, False, False]) >>> z = x.logical_xor(y) >>> print(z) ivy.array([False, True, True, False])
- maximum(x2, /, *, use_where=True, out=None)[source]#
ivy.Array instance method variant of ivy.maximum. This method simply wraps the function, and so the docstring for ivy.maximum also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input array containing elements to maximum threshold.x2 (
Union
[Array
,NativeArray
]) – Tensor containing maximum values, must be broadcastable to x1.use_where (
bool
, default:True
) – Whether to usewhere()
to calculate the maximum. IfFalse
, the maximum is calculated using the(x + y + |x - y|)/2
formula. Default isTrue
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Returns:
ret – An array with the elements of x1, but clipped to not be lower than the x2 values.
Examples
With
ivy.Array
inputs: >>> x = ivy.array([7, 9, 5]) >>> y = ivy.array([9, 3, 2]) >>> z = x.maximum(y) >>> print(z) ivy.array([9, 9, 5])>>> x = ivy.array([1, 5, 9, 8, 3, 7]) >>> y = ivy.array([[9], [3], [2]]) >>> z = ivy.zeros((3, 6)) >>> x.maximum(y, out=z) >>> print(z) ivy.array([[9.,9.,9.,9.,9.,9.], [3.,5.,9.,8.,3.,7.], [2.,5.,9.,8.,3.,7.]])
>>> x = ivy.array([[7, 3]]) >>> y = ivy.array([0, 7]) >>> x.maximum(y, out=x) >>> print(x) ivy.array([[7, 7]])
- minimum(x2, /, *, use_where=True, out=None)[source]#
ivy.Array instance method variant of ivy.minimum. This method simply wraps the function, and so the docstring for ivy.minimum also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Input array containing elements to minimum threshold.x2 (
Union
[Array
,NativeArray
]) – Tensor containing minimum values, must be broadcastable to x1.use_where (
bool
, default:True
) – Whether to usewhere()
to calculate the minimum. IfFalse
, the minimum is calculated using the(x + y - |x - y|)/2
formula. Default isTrue
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Returns:
ret – An array with the elements of x1, but clipped to not exceed the x2 values.
Examples
With
ivy.Array
inputs:>>> x = ivy.array([7, 9, 5]) >>> y = ivy.array([9, 3, 2]) >>> z = x.minimum(y) >>> print(z) ivy.array([7, 3, 2])
>>> x = ivy.array([1, 5, 9, 8, 3, 7]) >>> y = ivy.array([[9], [3], [2]]) >>> z = ivy.zeros((3, 6)) >>> x.minimum(y, out=z) >>> print(z) ivy.array([[1.,5.,9.,8.,3.,7.], [1.,3.,3.,3.,3.,3.], [1.,2.,2.,2.,2.,2.]])
>>> x = ivy.array([[7, 3]]) >>> y = ivy.array([0, 7]) >>> x.minimum(y, out=x) >>> print(x) ivy.array([[0, 3]])
- multiply(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.multiply. This method simply wraps the function, and so the docstring for ivy.multiply also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible with the first input array. (see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise products. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([3., 5., 7.]) >>> x2 = ivy.array([4., 6., 8.]) >>> y = x1.multiply(x2) >>> print(y) ivy.array([12., 30., 56.])
With mixed
ivy.Array
and ivy.NativeArray inputs:>>> x1 = ivy.array([8., 6., 7.]) >>> x2 = ivy.native_array([1., 2., 3.]) >>> y = x1.multiply(x2) >>> print(y) ivy.array([ 8., 12., 21.])
- nan_to_num(*, copy=True, nan=0.0, posinf=None, neginf=None, out=None)[source]#
ivy.Array instance method variant of ivy.nan_to_num. This method simply wraps the function, and so the docstring for ivy.nan_to_num also applies to this method with minimal changes.
- Parameters:
self (
Array
) – Array input.copy (
bool
, default:True
) – Whether to create a copy of x (True) or to replace values in-place (False). The in-place operation only occurs if casting to an array does not require a copy. Default is True.nan (
Union
[float
,int
], default:0.0
) – Value to be used to fill NaN values. If no value is passed then NaN values will be replaced with 0.0.posinf (
Optional
[Union
[int
,float
]], default:None
) – Value to be used to fill positive infinity values. If no value is passed then positive infinity values will be replaced with a very large number.neginf (
Optional
[Union
[int
,float
]], default:None
) – Value to be used to fill negative infinity values. If no value is passed then negative infinity values will be replaced with a very small (or negative) number.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Array with the non-finite values replaced. If copy is False, this may be x itself.
Examples
>>> x = ivy.array([1, 2, 3, nan]) >>> x.nan_to_num() ivy.array([1., 1., 3., 0.0]) >>> x = ivy.array([1, 2, 3, inf]) >>> x.nan_to_num(posinf=5e+100) ivy.array([1., 2., 3., 5e+100])
- negative(*, out=None)[source]#
ivy.Array instance method variant of ivy.negative. This method simply wraps the function, and so the docstring for ivy.negative also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have the same data type asself
.
Examples
With
ivy.Array
input:>>> x = ivy.array([2, 3 ,5, 7]) >>> y = x.negative() >>> print(y) ivy.array([-2, -3, -5, -7])
>>> x = ivy.array([0,-1,-0.5,2,3]) >>> y = ivy.zeros(5) >>> x.negative(out=y) >>> print(y) ivy.array([-0. , 1. , 0.5, -2. , -3. ])
>>> x = ivy.array([[1.1, 2.2, 3.3], ... [-4.4, -5.5, -6.6]]) >>> x.negative(out=x) >>> print(x) ivy.array([[ -1.1, -2.2, -3.3], [4.4, 5.5, 6.6]])
- not_equal(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.not_equal. This method simply wraps the function, and so the docstring for ivy.not_equal also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. May have any data type.x2 (
Union
[float
,Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting).out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type of
bool
.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([1., 7., 9.]) >>> y = x1.not_equal(x2) >>> print(y) ivy.array([True, False, False])
With mixed
ivy.Array
andivy.NativeArray
inputs:>>> x1 = ivy.array([2.5, 7.3, 9.375]) >>> x2 = ivy.native_array([2.5, 2.9, 9.375]) >>> y = x1.not_equal(x2) >>> print(y) ivy.array([False, True, False])
With mixed
ivy.Array
and float inputs:>>> x1 = ivy.array([2.5, 7.3, 9.375]) >>> x2 = 7.3 >>> y = x1.not_equal(x2) >>> print(y) ivy.array([True, False, True])
With mixed
ivy.Container
andivy.Array
inputs:>>> x1 = ivy.array([3., 1., 0.9]) >>> x2 = ivy.Container(a=ivy.array([12., 3.5, 6.3]), b=ivy.array([3., 1., 0.9])) >>> y = x1.not_equal(x2) >>> print(y) { a: ivy.array([True, True, True]), b: ivy.array([False, False, False]) }
- positive(*, out=None)[source]#
ivy.Array instance method variant of ivy.positive. This method simply wraps the function, and so the docstring for ivy.positive also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have the same data type asself
.
Examples
With
ivy.Array
input:>>> x = ivy.array([2, 3 ,5, 7]) >>> y = x.positive() >>> print(y) ivy.array([2, 3, 5, 7])
>>> x = ivy.array([0, -1, -0.5, 2, 3]) >>> y = ivy.zeros(5) >>> x.positive(out=y) >>> print(y) ivy.array([0., -1., -0.5, 2., 3.])
>>> x = ivy.array([[1.1, 2.2, 3.3], ... [-4.4, -5.5, -6.6]]) >>> x.positive(out=x) >>> print(x) ivy.array([[ 1.1, 2.2, 3.3], [-4.4, -5.5, -6.6]])
- pow(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.pow. This method simply wraps the function, and so the docstring for ivy.pow also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array whose elements correspond to the exponentiation base. Should have a real-valued data type.x2 (
Union
[int
,float
,Array
,NativeArray
]) – second input array whose elements correspond to the exponentiation exponent. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
input:>>> x = ivy.array([1, 2, 3]) >>> y = x.pow(3) >>> print(y) ivy.array([1, 8, 27])
>>> x = ivy.array([1.5, -0.8, 0.3]) >>> y = ivy.zeros(3) >>> x.pow(2, out=y) >>> print(y) ivy.array([2.25, 0.64, 0.09])
- rad2deg(*, out=None)[source]#
ivy.Array instance method variant of ivy.rad2deg. This method simply wraps the function, and so the docstring for ivy.rad2deg also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. to be converted from degrees to radians.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise conversion from radians to degrees.
Examples
With
ivy.Array
input:>>> x=ivy.array([1., 5., 8., 10.]) >>> y=x.rad2deg() >>> print(y) ivy.array([ 57.3, 286. , 458. , 573. ])
- real(*, out=None)[source]#
ivy.Array instance method variant of ivy.real. This method simply wraps the function, and so the docstring for ivy.real also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing test results. If input in an array is real then, it is returned unchanged. on the other hand, if it is complex then, it returns real part from it
Examples
>>> x = ivy.array([4+3j, 6+2j, 1-6j]) >>> x.real() ivy.array([4., 6., 1.])
- reciprocal(*, out=None)[source]#
ivy.Array instance method variant of ivy.reciprocal.This method simply wraps the function, and so the docstring for ivy.reciprocal also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array to compute the element-wise reciprocal for.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise reciprocal of
self
.
Examples
>>> x = ivy.array([1, 2, 3]) >>> y = x.reciprocal() >>> print(y) ivy.array([1., 0.5, 0.333])
- remainder(x2, /, *, modulus=True, out=None)[source]#
ivy.Array instance method variant of ivy.remainder. This method simply wraps the function, and so the docstring for ivy.remainder also applies to this method with minimal changes.
- Parameters:
self (
Array
) – dividend input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – divisor input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.modulus (
bool
, default:True
) – whether to compute the modulus instead of the remainder. Default isTrue
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. Each element-wise result must have the same sign as the respective element
x2_i
. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 5., 15.]) >>> x2 = ivy.array([3., 2., 4.]) >>> y = x1.remainder(x2) >>> print(y) ivy.array([2., 1., 3.])
With mixed
ivy.Array
andivy.NativeArray
inputs:>>> x1 = ivy.array([11., 4., 18.]) >>> x2 = ivy.native_array([2., 5., 8.]) >>> y = x1.remainder(x2) >>> print(y) ivy.array([1., 4., 2.])
- round(*, decimals=0, out=None)[source]#
ivy.Array instance method variant of ivy.round. This method simply wraps the function, and so the docstring for ivy.round also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.decimals (
int
, default:0
) – number of decimal places to round to. Default is0
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the rounded result for each element in
self
. The returned array must have the same data type asself
.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([6.3, -8.1, 0.5, -4.2, 6.8]) >>> y = x.round() >>> print(y) ivy.array([ 6., -8., 0., -4., 7.])
>>> x = ivy.array([-94.2, 256.0, 0.0001, -5.5, 36.6]) >>> y = x.round() >>> print(y) ivy.array([-94., 256., 0., -6., 37.])
>>> x = ivy.array([0.23, 3., -1.2]) >>> y = ivy.zeros(3) >>> x.round(out=y) >>> print(y) ivy.array([ 0., 3., -1.])
>>> x = ivy.array([[ -1., -67., 0., 15.5, 1.], [3, -45, 24.7, -678.5, 32.8]]) >>> y = x.round() >>> print(y) ivy.array([[-1., -67., 0., 16., 1.], [3., -45., 25., -678., 33.]])
- sign(*, np_variant=True, out=None)[source]#
ivy.Array instance method variant of ivy.sign. This method simply wraps the function, and so the docstring for ivy.sign also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a numeric data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the evaluated result for each element in
self
. The returned array must have the same data type asself
.
Examples
>>> x = ivy.array([5.7, -7.1, 0, -0, 6.8]) >>> y = x.sign() >>> print(y) ivy.array([ 1., -1., 0., 0., 1.])
>>> x = ivy.array([-94.2, 256.0, 0.0001, -0.0001, 36.6]) >>> y = x.sign() >>> print(y) ivy.array([-1., 1., 1., -1., 1.])
>>> x = ivy.array([[ -1., -67., 0., 15.5, 1.], [3, -45, 24.7, -678.5, 32.8]]) >>> y = x.sign() >>> print(y) ivy.array([[-1., -1., 0., 1., 1.], [ 1., -1., 1., -1., 1.]])
- sin(*, out=None)[source]#
ivy.Array instance method variant of ivy.sin. This method simply wraps the function, and so the docstring for ivy.sin also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements are each expressed in radians. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the sine of each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([0., 1., 2., 3.]) >>> y = x.sin() >>> print(y) ivy.array([0., 0.841, 0.909, 0.141])
- sinh(*, out=None)[source]#
ivy.Array instance method variant of ivy.sinh. This method simply wraps the function, and so the docstring for ivy.sinh also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements each represent a hyperbolic angle. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the hyperbolic sine of each element in
self
. The returned array must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([1., 2., 3.]) >>> print(x.sinh()) ivy.array([1.18, 3.63, 10.])
>>> x = ivy.array([0.23, 3., -1.2]) >>> y = ivy.zeros(3) >>> print(x.sinh(out=y)) ivy.array([0.232, 10., -1.51])
- sqrt(*, out=None)[source]#
ivy.Array instance method variant of ivy.sqrt. This method simply wraps the function, and so the docstring for ivy.sqrt also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the square root of each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
Using
ivy.Array
instance method:>>> x = ivy.array([[1., 2.], [3., 4.]]) >>> y = x.sqrt() >>> print(y) ivy.array([[1. , 1.41], [1.73, 2. ]])
- square(*, out=None)[source]#
ivy.Array instance method variant of ivy.square. This method simply wraps the function, and so the docstring for ivy.square also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued floating-point data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the square of each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
With
ivy.Array
instance method:>>> x = ivy.array([1, 2, 3]) >>> y = x.square() >>> print(y) ivy.array([1, 4, 9])
>>> x = ivy.array([[1.2, 2, 3.1], [-1, -2.5, -9]]) >>> x.square(out=x) >>> print(x) ivy.array([[1.44,4.,9.61],[1.,6.25,81.]])
- subtract(x2, /, *, alpha=None, out=None)[source]#
ivy.Array instance method variant of ivy.subtract. This method simply wraps the function, and so the docstring for ivy.subtract also applies to this method with minimal changes.
- Parameters:
self (
Array
) – first input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – second input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.alpha (
Optional
[Union
[int
,float
]], default:None
) – optional scalar multiplier forx2
.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise differences. The returned array must have a data type determined by type-promotion.
Examples
>>> x = ivy.array([5, 2, 3]) >>> y = ivy.array([1, 2, 6]) >>> z = x.subtract(y) >>> print(z) ivy.array([4, 0, -3])
>>> x = ivy.array([5., 5, 3]) >>> y = ivy.array([4, 5, 6]) >>> z = x.subtract(y, alpha=2) >>> print(z) ivy.array([-3., -5., -9.])
- tan(*, out=None)[source]#
ivy.Array instance method variant of ivy.tan. This method simply wraps the function, and so the docstring for ivy.tan also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements are expressed in radians. Should have a floating-point data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the tangent of each element in
self
. The return must have a floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([0., 1., 2.]) >>> y = x.tan() >>> print(y) ivy.array([0., 1.56, -2.19])
- tanh(*, complex_mode='jax', out=None)[source]#
ivy.Array instance method variant of ivy.tanh. This method simply wraps the function, and so the docstring for ivy.tanh also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array whose elements each represent a hyperbolic angle. Should have a real-valued floating-point data type.complex_mode (
Literal
['split'
,'magnitude'
,'jax'
], default:'jax'
) – optional specifier for how to handle complex data types. Seeivy.func_wrapper.handle_complex_input
for more detail.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the hyperbolic tangent of each element in
self
. The returned array must have a real-valued floating-point data type determined by type-promotion.
Examples
>>> x = ivy.array([0., 1., 2.]) >>> y = x.tanh() >>> print(y) ivy.array([0., 0.762, 0.964])
- trapz(*, x=None, dx=1.0, axis=-1, out=None)[source]#
ivy.Array instance method variant of ivy.trapz. This method simply wraps the function, and so the docstring for ivy.trapz also applies to this method with minimal changes.
- Parameters:
self (
Array
) – The array that should be integrated.x (
Optional
[Array
], default:None
) – The sample points corresponding to the input array values. If x is None, the sample points are assumed to be evenly spaced dx apart. The default is None.dx (
float
, default:1.0
) – The spacing between sample points when x is None. The default is 1.axis (
int
, default:-1
) – The axis along which to integrate.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to.
- Return type:
Array
- Returns:
ret – Definite integral of n-dimensional array as approximated along a single axis by the trapezoidal rule. If the input array is a 1-dimensional array, then the result is a float. If n is greater than 1, then the result is an n-1 dimensional array.
Examples
>>> y = ivy.array([1, 2, 3]) >>> ivy.trapz(y) 4.0 >>> y = ivy.array([1, 2, 3]) >>> x = ivy.array([4, 6, 8]) >>> ivy.trapz(y, x=x) 8.0 >>> y = ivy.array([1, 2, 3]) >>> ivy.trapz(y, dx=2) 8.0
- trunc(*, out=None)[source]#
ivy.Array instance method variant of ivy.trunc. This method simply wraps the function, and so the docstring for ivy.trunc also applies to this method with minimal changes.
- Parameters:
self (
Array
) – input array. Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the rounded result for each element in
self
. The returned array must have the same data type asself
Examples
>>> x = ivy.array([-1, 0.54, 3.67, -0.025]) >>> y = x.trunc() >>> print(y) ivy.array([-1., 0., 3., -0.])
- trunc_divide(x2, /, *, out=None)[source]#
ivy.Array instance method variant of ivy.trunc_divide. This method simply wraps the function, and so the docstring for ivy.trunc_divide also applies to this method with minimal changes.
- Parameters:
self (
Array
) – dividend input array. Should have a real-valued data type.x2 (
Union
[Array
,NativeArray
]) – divisor input array. Must be compatible withself
(see broadcasting). Should have a real-valued data type.out (
Optional
[Array
], default:None
) – optional output array, for writing the result to. It must have a shape that the inputs broadcast to.
- Return type:
Array
- Returns:
ret – an array containing the element-wise results. The returned array must have a data type determined by type-promotion.
Examples
With
ivy.Array
inputs:>>> x1 = ivy.array([2., 7., 9.]) >>> x2 = ivy.array([2., -2., 2.]) >>> y = x1.trunc_divide(x2) >>> print(y) ivy.array([ 1., -3., 4.])
This should have hopefully given you an overview of the elementwise submodule, if you have any questions, please feel free to reach out on our discord!